Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 261: 43-52, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26874738

ABSTRACT

Large numbers of experimental toolmarks of screwdrivers are often required in casework of toolmark examiners and in research environments alike, to be able to recover the angle of attack of a crime scene mark and to determine statistically meaningful properties of toolmarks respectively. However, in practice the number of marks is limited by the time needed to create them. In this article, we present an approach to predict how a striated mark of a particular tool would look like, using 3D surface datasets of screwdrivers. We compare these virtual toolmarks qualitatively and quantitatively with real experimental marks in wax and show that they are very similar. In addition we study toolmark similarity, dependent on the angle of attack, with a very high angular resolution of 1°. The results show that for the tested type of screwdriver, our toolmark comparison framework yields known match similarity scores that are above the mean known non-match similarity scores, even for known match differences in angle of attack of up to 40°. In addition we demonstrate an approach to automatically recover the angle of attack of an experimental toolmark and experiments yield high accuracy and precision of 0.618 ± 4.179°. Furthermore, we present a strategy to study the structural elements of striated toolmarks using wavelet analysis, and show how to use the results to simulate realistic toolmarks.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Weapons , Wounds, Penetrating/pathology , Datasets as Topic , Forensic Sciences/methods , Humans , Software , Wavelet Analysis
2.
J Forensic Sci ; 57(4): 900-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22471845

ABSTRACT

In February 2009, the National Academy of Sciences published a report entitled "Strengthening Forensic Science in the United States: A Path Forward." The report notes research studies must be performed to "…understand the reliability and repeatability…" of comparison methods commonly used in forensic science. Numerical classification methods have the ability to assign objective quantitative measures to these words. In this study, reproducible sets of ideal striation patterns were made with nine slotted screwdrivers, encoded into high-dimensional feature vectors, and subjected to multiple statistical pattern recognition methods. The specific methods employed were chosen because of their long peer-reviewed track records, widespread successful use for both industry and academic applications, rely on few assumptions on the data's underlying distribution, can be accompanied by standard confidence levels, and are falsifiable. For PLS-DA, correct classification rates of 97% or higher were achieved by retaining only eight dimensions (8D) of data. PCA-SVM required even fewer dimensions, 4D, for the same level of performance. Finally, for the first time in forensic science, it is shown how to use conformal prediction theory to compute identifications of striation patterns at a given level of confidence.


Subject(s)
Discriminant Analysis , Equipment Design , Multivariate Analysis , Principal Component Analysis , Support Vector Machine , Weapons , Forensic Sciences/methods , Humans , Wounds and Injuries/pathology
3.
Scanning ; 33(5): 272-8, 2011.
Article in English | MEDLINE | ID: mdl-21710632

ABSTRACT

Over the last several decades, forensic examiners of impression evidence have come under scrutiny in the courtroom due to analysis methods that rely heavily on subjective morphological comparisons. Currently, there is no universally accepted system that generates numerical data to independently corroborate visual comparisons. Our research attempts to develop such a system for tool mark evidence, proposing a methodology that objectively evaluates the association of striated tool marks with the tools that generated them. In our study, 58 primer shear marks on 9 mm cartridge cases, fired from four Glock model 19 pistols, were collected using high-resolution white light confocal microscopy. The resulting three-dimensional surface topographies were filtered to extract all "waviness surfaces"-the essential "line" information that firearm and tool mark examiners view under a microscope. Extracted waviness profiles were processed with principal component analysis (PCA) for dimension reduction. Support vector machines (SVM) were used to make the profile-gun associations, and conformal prediction theory (CPT) for establishing confidence levels. At the 95% confidence level, CPT coupled with PCA-SVM yielded an empirical error rate of 3.5%. Complementary, bootstrap-based computations for estimated error rates were 0%, indicating that the error rate for the algorithmic procedure is likely to remain low on larger data sets. Finally, suggestions are made for practical courtroom application of CPT for assigning levels of confidence to SVM identifications of tool marks recorded with confocal microscopy.


Subject(s)
Firearms/standards , Forensic Medicine/methods , Forensic Medicine/standards , Algorithms , Imaging, Three-Dimensional , Microscopy, Confocal , Pattern Recognition, Automated , Principal Component Analysis , Statistics as Topic , Support Vector Machine , Surface Properties
4.
J Med Chem ; 53(4): 1483-95, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20108931

ABSTRACT

Dengue fever is a viral disease that affects 50-100 million people annually and is one of the most important emerging infectious diseases in many areas of the world. Currently, neither specific drugs nor vaccines are available. Here, we report on the discovery of new inhibitors of the viral NS5 RNA methyltransferase, a promising flavivirus drug target. We have used a multistage molecular docking approach to screen a library of more than 5 million commercially available compounds against the two binding sites of this enzyme. In 263 compounds chosen for experimental verification, we found 10 inhibitors with IC(50) values of <100 microM, of which four exhibited IC(50) values of <10 microM in in vitro assays. The initial hit list also contained 25 nonspecific aggregators. We discuss why this likely occurred for this particular target. We also describe our attempts to use aggregation prediction to further guide the study, following this finding.


Subject(s)
Databases, Factual , Dengue Virus/enzymology , Methyltransferases/antagonists & inhibitors , Models, Molecular , Pharmaceutical Preparations/chemistry , Binding Sites , Computers , Drug Discovery , Ligands , Methyltransferases/chemistry , Methyltransferases/genetics , Mutation , Protein Binding , Structure-Activity Relationship
5.
J Med Chem ; 47(7): 1739-49, 2004 Mar 25.
Article in English | MEDLINE | ID: mdl-15027865

ABSTRACT

Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand. In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses. The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose. Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms. Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose. Errors in geometry for the top-ranked pose are less than 1 A in nearly half of the cases and are greater than 2 A in only about one-third of them. Comparisons to published data on rms deviations show that Glide is nearly twice as accurate as GOLD and more than twice as accurate as FlexX for ligands having up to 20 rotatable bonds. Glide is also found to be more accurate than the recently described Surflex method.


Subject(s)
Drug Design , Ligands , Models, Molecular , Proteins/chemistry , Binding Sites , Molecular Conformation , Molecular Structure , Monte Carlo Method , Protein Conformation , Quantitative Structure-Activity Relationship , Thermodynamics , Thymidine Kinase/chemistry
6.
Inorg Chem ; 41(8): 2060-9, 2002 Apr 22.
Article in English | MEDLINE | ID: mdl-11952359

ABSTRACT

De novo structural prediction of transition metal complexes is investigated. Technetium complexes are chosen given their importance in medical imaging and nuclear waste remediation and for the chemical diversity they display. A new conformational searching algorithm (LIGB) for transition metals is described that allows one to search for different conformational and geometric isomers within a single simulation. In the preponderance of cases, both conformational searching techniques (LIGB and high-temperature molecular dynamics/simulated annealing) provide comparable results, while LIGB is superior for macrocyclic complexes. A genetic algorithm-optimized PM3(tm) parametrization for Tc is compared with the standard implementation and found to yield a significant improvement in predictive ability for the most prevalent Tc structural motifs. The utility of a coupled molecular mechanics-semiempirical quantum mechanics protocol is demonstrated for very rapid, efficient, and effective de novo prediction of transition metal complex geometries.

7.
J Comput Chem ; 23(2): 214-21, 2002 Jan 30.
Article in English | MEDLINE | ID: mdl-11924735

ABSTRACT

The generalized Born/surface area (GB/SA) continuum model for solvation free energy is a fast and accurate alternative to using discrete water molecules in molecular simulations of solvated systems. However, computational studies of large solvated molecular systems such as enzyme-ligand complexes can still be computationally expensive even with continuum solvation methods simply because of the large number of atoms in the solute molecules. Because in such systems often only a relatively small portion of the system such as the ligand binding site is under study, it becomes less attractive to calculate energies and derivatives for all atoms in the system. To curtail computation while still maintaining high energetic accuracy, atoms distant from the site of interest are often frozen; that is, their coordinates are made invariant. Such frozen atoms do not require energetic and derivative updates during the course of a simulation. Herein we describe methodology and results for applying the frozen atom approach to both the generalized Born (GB) and the solvent accessible surface area (SASA) parts of the GB/SA continuum model for solvation free energy. For strictly pairwise energetic terms, such as the Coulombic and van-der-Waals energies, contributions from pairs of frozen atoms can be ignored. This leaves energetic differences unaffected for conformations that vary only in the positions of nonfrozen atoms. Due to the nonlocal nature of the GB analytical form, however, excluding such pairs from a GB calculation leads to unacceptable inaccuracies. To apply a frozen-atom scheme to GB calculations, a buffer region within the frozen-atom zone is generated based on a user-definable cutoff distance from the nonfrozen atoms. Certain pairwise interactions between frozen atoms in the buffer region are retained in the GB computation. This allows high accuracy in conformational GB comparisons to be maintained while achieving significant savings in computational time compared to the full (nonfrozen) calculation. A similar approach for using a buffer region of frozen atoms is taken for the SASA calculation. The SASA calculation is local in nature, and thus exact SASA energies are maintained. With a buffer region of 8 A for the frozen-atom cases, excellent agreement in differences in energies for three different conformations of cytochrome P450 with a bound camphor ligand are obtained with respect to the nonfrozen cases. For various minimization protocols, simulations run 2 to 10.5 times faster and memory usage is reduced by a factor of 1.5 to 5. Application of the frozen atom method for GB/SA calculations thus can render computationally tractable biologically and medically important simulations such as those used to study ligand-receptor binding conformations and energies in a solvated environment.


Subject(s)
Models, Molecular , Thermodynamics , Water/chemistry , Macromolecular Substances , Proteins/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...