Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 83(2): 301-315, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36351060

ABSTRACT

Effective treatments for de novo and treatment-emergent small-cell/neuroendocrine (t-SCNC) prostate cancer represent an unmet need for this disease. Using metastatic biopsies from patients with advanced cancer, we demonstrate that delta-like ligand 3 (DLL3) is expressed in de novo and t-SCNC and is associated with reduced survival. We develop a PET agent, [89Zr]-DFO-DLL3-scFv, that detects DLL3 levels in mouse SCNC models. In multiple patient-derived xenograft models, AMG 757 (tarlatamab), a half-life-extended bispecific T-cell engager (BiTE) immunotherapy that redirects CD3-positive T cells to kill DLL3-expressing cells, exhibited potent and durable antitumor activity. Late relapsing tumors after AMG 757 treatment exhibited lower DLL3 levels, suggesting antigen loss as a resistance mechanism, particularly in tumors with heterogeneous DLL3 expression. These findings have been translated into an ongoing clinical trial of AMG 757 in de novo and t-SCNC, with a confirmed objective partial response in a patient with histologically confirmed SCNC. Overall, these results identify DLL3 as a therapeutic target in SCNC and demonstrate that DLL3-targeted BiTE immunotherapy has significant antitumor activity in this aggressive prostate cancer subtype. SIGNIFICANCE: The preclinical and clinical evaluation of DLL3-directed immunotherapy, AMG 757, and development of a PET radiotracer for noninvasive DLL3 detection demonstrate the potential of targeting DLL3 in SCNC prostate cancer.


Subject(s)
Membrane Proteins , Prostatic Neoplasms , Animals , Humans , Male , Mice , Antibodies, Monoclonal , Immunotherapy , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Membrane Proteins/immunology , Membrane Proteins/metabolism , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Zirconium , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/therapy
2.
Cancer Res ; 82(21): 3950-3961, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36273492

ABSTRACT

Over one million cases of gastric cancer are diagnosed each year globally, and the metastatic disease continues to have a poor prognosis. A significant proportion of gastric tumors have defects in the DNA damage response pathway, creating therapeutic opportunities through synthetic lethal approaches. Several small-molecule inhibitors of ATR, a key regulator of the DNA damage response, are now in clinical development as targeted agents for gastric cancer. Here, we performed a large-scale CRISPR interference screen to discover genetic determinants of response and resistance to ATR inhibitors (ATRi) in gastric cancer cells. Among the top hits identified as mediators of ATRi response were UPF2 and other components of the nonsense-mediated decay (NMD) pathway. Loss of UPF2 caused ATRi resistance across multiple gastric cancer cell lines. Global proteomic, phosphoproteomic, and transcriptional profiling experiments revealed that cell-cycle progression and DNA damage responses were altered in UPF2-mutant cells. Further studies demonstrated that UPF2-depleted cells failed to accumulate in G1 following treatment with ATRi. UPF2 loss also reduced transcription-replication collisions, which has previously been associated with ATRi response, thereby suggesting a possible mechanism of resistance. Our results uncover a novel role for NMD factors in modulating response to ATRi in gastric cancer, highlighting a previously unknown mechanism of resistance that may inform the clinical use of these drugs. SIGNIFICANCE: Loss of NMD proteins promotes resistance to ATR inhibitors in gastric cancer cells, which may provide a combination of therapeutic targets and biomarkers to improve the clinical utility of these drugs.


Subject(s)
Stomach Neoplasms , Humans , Proteomics , Protein Kinase Inhibitors , Nonsense Mediated mRNA Decay , RNA-Binding Proteins , Ataxia Telangiectasia Mutated Proteins
3.
Nat Genet ; 52(8): 778-789, 2020 08.
Article in English | MEDLINE | ID: mdl-32661416

ABSTRACT

Although DNA methylation is a key regulator of gene expression, the comprehensive methylation landscape of metastatic cancer has never been defined. Through whole-genome bisulfite sequencing paired with deep whole-genome and transcriptome sequencing of 100 castration-resistant prostate metastases, we discovered alterations affecting driver genes that were detectable only with integrated whole-genome approaches. Notably, we observed that 22% of tumors exhibited a novel epigenomic subtype associated with hypermethylation and somatic mutations in TET2, DNMT3B, IDH1 and BRAF. We also identified intergenic regions where methylation is associated with RNA expression of the oncogenic driver genes AR, MYC and ERG. Finally, we showed that differential methylation during progression preferentially occurs at somatic mutational hotspots and putative regulatory regions. This study is a large integrated study of whole-genome, whole-methylome and whole-transcriptome sequencing in metastatic cancer that provides a comprehensive overview of the important regulatory role of methylation in metastatic castration-resistant prostate cancer.


Subject(s)
DNA Methylation/genetics , Prostatic Neoplasms/genetics , Aged , Aged, 80 and over , Carcinogenesis/genetics , Epigenomics/methods , Gene Expression Regulation, Neoplastic/genetics , Genome/genetics , Humans , Male , Middle Aged , Mutation/genetics , Prospective Studies , Sequence Analysis, DNA/methods , Exome Sequencing/methods , Whole Genome Sequencing/methods
4.
Genomics ; 98(2): 79-89, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21565264

ABSTRACT

The success of genome-wide association studies has paralleled the development of efficient genotyping technologies. We describe the development of a next-generation microarray based on the new highly-efficient Affymetrix Axiom genotyping technology that we are using to genotype individuals of European ancestry from the Kaiser Permanente Research Program on Genes, Environment and Health (RPGEH). The array contains 674,517 SNPs, and provides excellent genome-wide as well as gene-based and candidate-SNP coverage. Coverage was calculated using an approach based on imputation and cross validation. Preliminary results for the first 80,301 saliva-derived DNA samples from the RPGEH demonstrate very high quality genotypes, with sample success rates above 94% and over 98% of successful samples having SNP call rates exceeding 98%. At steady state, we have produced 462 million genotypes per week for each Axiom system. The new array provides a valuable addition to the repertoire of tools for large scale genome-wide association studies.


Subject(s)
Genome-Wide Association Study/methods , High-Throughput Screening Assays , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide/genetics , White People/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...