Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Plant Sci ; 9: 1051, 2018.
Article in English | MEDLINE | ID: mdl-30079077

ABSTRACT

The degree of heterosis in different hybrid rice varieties is reported to be at the highest in indica/japonica cross combination, however, there is a problem of sterility and semi-sterility in such inter sub specific hybrids. To overcome this problem, it is essential to develop parental lines having wide compatibility (S5n ) gene. In this study, a functional marker S5-InDel was used for marker-assisted backcrossing (MABB) to introgress S5n gene from Dular into the genetic background of a widely grown recurrent parent IR 58025B, a maintainer line of wild-abortive (WA) cytoplasmic male sterile line, IR 58025A. Further, a closely linked marker nksbadh2 was used for the identification of plants devoid of aroma in backcross population to develop hybrids with no aroma. The stringent phenotypic selection followed by background selection of BC3F4 identified plants with 94.51-98.90% of the recurrent parent genome recovery of lines carrying S5n gene. Subsequently, at 10 promising BC3F5 lines possessing S5n gene with high yielding and long-slender grain type were validated for their maintainer behavior through test crosses with IR 58025A. Also the improved lines showed significantly improved spikelet fertility performance while crossed with japonica and javanica testers in comparison to the original recurrent parent. The improved lines developed in the present study, are being converted to CMS lines through marker-assisted backcross breeding to facilitate precise and improved hybrid breeding program in rice.

2.
Plant Soil ; 417(1): 377-392, 2017.
Article in English | MEDLINE | ID: mdl-31258196

ABSTRACT

AIMS: Drought is the major constraint to rainfed rice productivity in South Asia, but few reports provide detailed characterization of the soil properties related to drought stress severity in the region. The aim of the study was to provide a compilation of drought breeding network sites and their respective levels of drought stress, and to relate soil parameters with yield reduction by drought. METHODS: This study characterized levels of drought stress and soil nutrient and physical properties at 18 geographically distributed research station sites involved in rice varietal screening in Bangladesh, India, and Nepal, as well as at farmers' fields located near the research stations. RESULTS: Based on soil resistance to penetration profiles, a hardpan was surprisingly absent at about half of the sites characterized. Significant relationships of depth of compaction and yield reduction by drought indicated the effects of soil puddling on susceptibility to cracking, rather than water retention by hardpans, on plant water availability in this region. The main difference between research stations and nearby farmers' fields was in terms of soil compaction. CONCLUSIONS: These results present an initiative for understanding the range of severities of reproductive-stage drought stress in drought-prone rainfed lowland rice-growing areas in South Asia.

3.
PLoS One ; 10(4): e0124127, 2015.
Article in English | MEDLINE | ID: mdl-25909711

ABSTRACT

The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb) and on chromosome 8 (20.3-21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.


Subject(s)
Oryza/growth & development , Oryza/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Droughts , Environment , Genetic Association Studies , Genome, Plant , Plant Roots/genetics , Plant Roots/growth & development , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...