Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 31(1): 107480, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268099

ABSTRACT

Perceived palatability of food controls caloric intake. Sweet taste is the primary means of detecting the carbohydrate content of food. Surprisingly, sweet taste sensitivity is responsive to extrinsic factors like diet, and this occurs by unknown mechanisms. Here, we describe an unbiased proteomic investigation into sweet taste sensitivity in the fruit fly. We identify a dopamine/cyclic AMP (cAMP)/CREB axis acting within sweet taste neurons that controls taste perception but is largely dispensable for acute taste transduction. This pathway modulates sweet taste perception in response to both sensory- and nutrient-restricted diets and converges on PGC1α, a critical regulator of metabolic health and lifespan. By electrophysiology, we found that enhanced sucrose taste sensitivity was the result of heightened sweet taste intensity and that PGC1α was both necessary and sufficient for this effect. Together, we provide the first molecular insight into how diet-induced taste perception is regulated within the sweet taste neuron.


Subject(s)
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Taste Perception/physiology , Taste/physiology , Animals , Diet , Dopamine/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Energy Intake , Food Preferences/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology , Proteomics , Signal Transduction , Sucrose/metabolism
2.
Nat Commun ; 10(1): 540, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710084

ABSTRACT

Hundreds of genetic variants have been associated with Body Mass Index (BMI) through genome-wide association studies (GWAS) using observational cohorts. However, the genetic contribution to efficient weight loss in response to dietary intervention remains unknown. We perform a GWAS in two large low-caloric diet intervention cohorts of obese participants. Two loci close to NKX6.3/MIR486 and RBSG4 are identified in the Canadian discovery cohort (n = 1166) and replicated in the DiOGenes cohort (n = 789). Modulation of HGTX (NKX6.3 ortholog) levels in Drosophila melanogaster leads to significantly altered triglyceride levels. Additional tissue-specific experiments demonstrate an action through the oenocytes, fly hepatocyte-like cells that regulate lipid metabolism. Our results identify genetic variants associated with the efficacy of weight loss in obese subjects and identify a role for NKX6.3 in lipid metabolism, and thereby possibly weight control.


Subject(s)
Genome-Wide Association Study , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Weight Loss/genetics , Adult , Animals , Bayes Theorem , Cohort Studies , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Female , Homeodomain Proteins/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , Transcription Factors/genetics , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...