Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Razi Inst ; 76(4): 1087-1093, 2021 10.
Article in English | MEDLINE | ID: mdl-35096345

ABSTRACT

Acute lymphoid leukemia (ALL) affects the lymph cells or lymphocytes that make up the lymph tissue and prevents the proper maturation of the bone marrow cells. The processes through which cells convert mechanical stimuli into biochemical signals are called mechanical transitions and result in the sensation of specific cellular responses. In the present study, the functional properties of granulocytes of the patients with ALL were investigated using the in vitro mechanical stress model. The experimental part of the work was executed using blood from patients with ALL (n=30) being treated in the Hematological Department of Belgorod Region Hospital, Belgorod, Russia. The patients were in the age range of 18-45 years. Sample blood was obtained from all the patients who underwent a standard course of chemotherapy. Blood sampling was performed using a venepuncture and collected into the vacuum tubes Vacuette K3E. Blood samples from each experimental group were divided into two groups of control and experiment. The injection model of mechanical stress was used for the experiment group in vitro. Subsequently, the adenosine triphosphate (ATP) concentration increased by 1.8 times in this group, compared with the controls. Young's module, which numerically characterizes the rigidity of the granulocytes' plasmalemma, decreased by 54.4% (P<0.05) under the influence of mechanical stress. The surface potential of plasmalemma was not significantly different between samples in the group of control and experiment in patients with ALL. However, the adhesive force between erythrocyte and granulocyte increased by 30.7% (P<0.05). The osmotic load test showed an increase in the cell's volume during incubation. The use of membrane reserve by granulocytes increased by 47% (P<0.05) at the initial seconds of incubation. The obtained results pointed to the regulatory role of ATP molecules in intercellular signaling and add to the present literature regarding the mechanisms of intercellular interaction in the microvasculature on the development of leukemia. Moreover, the obtained results can be taken into account for the development of new pharmacological immune correctors.


Subject(s)
Granulocytes , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Lymphocytes , Stress, Mechanical , Humans , Adolescent , Young Adult , Adult , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...