Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 191(1-3): 212-8, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21592661

ABSTRACT

Aquatic plant debris in lakes or rivers may affect phosphorus flux in water-sediment systems. In this study, either aquatic plant debris or typical plant components (cellulose or glucose), were added into a system of sediment (50 g) and overlying water (2L) with different initial SRP (soluble reactive phosphorus) concentrations to investigate the impact. After 18 days of treatment with 4 g of plant debris, the SRP in the overlying water for 0.5 and 2 mg L(-1) initial SRP tests at 30°C decreased by 41 and 53%, respectively, compared to the treatments without plant debris. Cellulose and glucose treatments gave similar results as plant debris treatment. When the water-sediment system was sterilized, the cellulose- or glucose-facilitated decrease in SRP vanished. Additionally, in the non-sterilized system, the glucose treatment significantly increased both the microbial biomass carbon and the microbial biomass phosphorous in the sediment. Although total phosphorous in the sediment increased with glucose treatment, its water soluble and iron associated inorganic fractions, two labile phosphorus fractions, were clearly reduced. Our results suggest that the short-term retention of plant debris in water systems facilitates a decrease in overlying water SRP through microbe-mediated mechanisms of phosphorus adsorption and stabilization in sediment.


Subject(s)
Geologic Sediments , Phosphorus/metabolism , Plants/metabolism , Adsorption , Biomass , Water Microbiology
3.
Environ Pollut ; 143(1): 9-15, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16436308

ABSTRACT

The desorption characteristics of lead in two variable charge soils (one developed from Arenaceous rock (RAR) and the other derived from Quaternary red earths (REQ)) were studied, and the effects of pH value, organic acid, and competitive ions were examined. Desorption of Pb(2+) decreased from nearly 100.0 to 20.0% within pH 1.0-4.0 in both soils, and then the decrease diminished at pH > 4.0. Organic ligands at relatively low concentrations (< or =10(-3) mol L(-1)) slightly inhibited Pb(2+) desorption, but enhanced Pb(2+) desorption at higher concentrations. In this study, citric acid or acetic acid at higher concentrations (>10(-3) mol L(-1)) had the greatest improvement of Pb(2+) desorption, followed by malic acid; and the smallest was oxalic acid. Desorption of the adsorbed Pb(2+) increased greatly with increasing concentrations of added Cu(2+) or Zn(2+). Applied Cu(2+) increased Pb(2+) desorption more than Zn(2+) at the same loading.


Subject(s)
Environmental Pollution , Environmental Restoration and Remediation/methods , Lead/toxicity , Soil Pollutants/toxicity , Acetic Acid/pharmacology , Adsorption , Biodegradation, Environmental , Chelating Agents/pharmacology , Citric Acid/pharmacology , Copper/chemistry , Humic Substances , Hydrogen-Ion Concentration , Ions , Lead/chemistry , Malates/pharmacology , Oxalic Acid/pharmacology , Soil Pollutants/chemistry , Zinc/chemistry
4.
Article in English | MEDLINE | ID: mdl-15332661

ABSTRACT

Adsorption desorption processes of Pb at contaminated levels in two variable charge soils were investigated. The red soil (RAR) developed on the Arenaceous rock (clayey, mixed siliceous thermic typic Dystrochrept) adsorbed more Pb2+ than the red soil (REQ) derived from the Quaternary red earths (clayey, kaolinitic thermic plinthite Aquult). The maximum adsorption values (Xm) that were obtained from the simple Langmuir model were 52.6 mmol Pb2+ kg(-1) soil and 29.9 mmol Pb2+ kg(-1) soil, respectively, for the RAR and REQ. Adsorption of Pb2+ decreased soil pH by 1.10 unit for the RAR soil and 1.21 unit for the REQ soil at the highest loading. The adsorption equilibrium pH of RAR was higher than that of REQ at the same Pb2+ concentration. The distribution coefficient (Kd) of Pb in the soils decreased exponentially with increasing Pb2+ loading. Most of the adsorbed Pb2+ in the soils was not desorbed in the 0.01 mol L(-1) NaNO3 solution. After five successive extractions with NaNO3, only 0-11% of the total adsorbed Pb2+ in the RAR soil was desorbed and the corresponding value of the REQ soil was 0-19%, indicating that the RAR soil had a greater affinity for Pb2+ than the REQ soil at the same Pb2+ loading. Different mechanisms might be involved in Pb2+ adsorption/desorption at different levels of Pb2+ loading and between the two soils.


Subject(s)
Lead/chemistry , Soil Pollutants/analysis , Adsorption , Environmental Monitoring , Lead/analysis , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...