Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 57(3): 1394-403, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23295920

ABSTRACT

Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Boron Compounds/pharmacology , Escherichia coli/drug effects , Gram-Negative Bacterial Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Amino Acyl-tRNA Synthetases/metabolism , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Boron Compounds/chemical synthesis , Boron Compounds/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/enzymology , Female , Gram-Negative Bacterial Infections/microbiology , Humans , Leucine/metabolism , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship , Thigh/microbiology , beta-Lactamase Inhibitors , beta-Lactamases/metabolism
2.
Anal Biochem ; 386(2): 244-50, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19135023

ABSTRACT

Adenylation domains are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during nonribosomal peptide (NRP) biosynthesis. NRPs display a wide range of biological activities and are some of the most important drugs currently used in clinics. Traditionally, activity of adenylation domains has been measured by radioactive ATP-[32P]pyrophosphate (PP(i)) exchange assays. To identify adenylation domains for future combinatorial production of novel NRPs as potential drugs, we report a convenient high-throughput nonradioactive method to measure activity of these enzymes. In our assay, malachite green is used to measure orthophosphate (P(i)) concentrations after degradation by inorganic pyrophosphatase of the PP(i) released during aminoacyl-AMP formation by action of the adenylation domains. The assay is quantitative, accurate, and robust, and it can be performed in 96- and 384-well plate formats. The performance of our assay was tested by using NcpB-A(4), one of the seven adenylation domains involved in nostocyclopeptide biosynthesis. The kinetics of pyrophosphate release monitored by this method are much slower than those measured by a traditional ATP-[32P]PP(i) exchange assay. This observation indicates that the formation of the adenylated amino acid and its release are the rate-limiting steps during the catalytic turnover.


Subject(s)
Peptide Biosynthesis, Nucleic Acid-Independent , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Biological Assay , Combinatorial Chemistry Techniques/methods , Diphosphates/chemistry , Diphosphates/metabolism , Kinetics , Protein Structure, Tertiary , Substrate Specificity
3.
Mol Biosyst ; 4(6): 622-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18493661

ABSTRACT

Thiocoraline is a thiodepsipeptide antitumor agent that belongs to the family of bisintercalator natural products that bind duplex DNA through their two planar intercalating moieties. In thiocoraline, the 3-hydroxyquinaldic acid (3HQA) chromophores required for intercalation are derived from L-Trp. We have expressed the Micromonospora sp. ML1 tryptophan 2,3-dioxygenase(TDO) TioF, purified it from E. coli, and confirmed its role in the irreversible oxidation of L-Trp to N-formylkynurenine, the proposed first step during 3HQA biosynthesis. We have established that TioF is a catalyst with broader specificity than other TDOs, but that is less promiscuous than indoleamine 2,3-dioxygenases. TioF was found to display activity with various L-Trp analogs (serotonin, D-Trp, and indole). The TioF reaction products generated during this study will be used as substrates for subsequent analysis of the other enzymes involved in 3HQA biosynthesis.


Subject(s)
Depsipeptides/biosynthesis , Tryptophan Oxygenase/metabolism , Depsipeptides/chemistry , Enzyme Activation , Kinetics , Kynurenic Acid/analogs & derivatives , Kynurenic Acid/chemistry , Micromonospora/enzymology , Molecular Conformation , Oxidation-Reduction , Stereoisomerism , Substrate Specificity , Tryptophan Oxygenase/chemistry , Tryptophan Oxygenase/isolation & purification
4.
J Biol Chem ; 283(19): 12971-80, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18319246

ABSTRACT

The activation of D-tyrosine by tyrosyl-tRNA synthetase has been investigated using single and multiple turnover kinetic methods. In the presence of saturating concentrations of D-tyrosine, the activation reaction displays sigmoidal kinetics with respect to ATP concentration under single turnover conditions. In contrast, when the kinetics for the activation reaction are monitored using a steady-state (multiple turnover) pyrophosphate exchange assay, Michaelis-Menten kinetics are observed. Previous investigations indicated that activation of l-tyrosine by the K233A variant of Bacillus stearothermophilus tyrosyl-tRNA synthetase displays sigmoidal kinetics similar to those observed for activation of d-tyrosine by the wild-type enzyme. Kinetic analyses indicate that the sigmoidal behavior of the d-tyrosine activation reaction is not enhanced when Lys-233 is replaced by alanine. This supports the hypothesis that the mechanistic basis for the sigmoidal behavior is the same for both d-tyrosine activation by wild-type tyrosyl-tRNA synthetase and activation of l-tyrosine by the K233A variant. The observed sigmoidal behavior presents a paradox, as tyrosyl-tRNA synthetase displays an extreme form of negative cooperativity, known as "half-of-the-sites reactivity," with respect to tyrosine binding and tyrosyl-adenylate formation. We propose that the binding of D-tyrosine weakens the affinity with which ATP binds to the functional subunit in tyrosyl-tRNA synthetase. This allows ATP to bind initially to the nonfunctional subunit, inducing a conformational change in the enzyme that enhances the affinity of the functional subunit for ATP. The observation that sigmoidal kinetics are observed only under single turnover conditions suggests that this conformational change is stable over multiple rounds of catalysis.


Subject(s)
Adenosine Triphosphate/metabolism , Geobacillus stearothermophilus/enzymology , Tyrosine-tRNA Ligase/metabolism , Tyrosine/metabolism , Enzyme Activation , Kinetics , Mutation/genetics , Phosphates/metabolism , Phosphorylation , Protein Binding , Tyrosine-tRNA Ligase/genetics
5.
J Biol Chem ; 283(19): 12960-70, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18319247

ABSTRACT

Tyrosyl-tRNA synthetase (TyrRS) is able to catalyze the transfer of both l- and d-tyrosine to the 3' end of tRNA(Tyr). Activation of either stereoisomer by ATP results in formation of an enzyme-bound tyrosyl-adenylate intermediate and is accompanied by a blue shift in the intrinsic fluorescence of the protein. Single turnover kinetics for the aminoacylation of tRNA(Tyr) by D-tyrosine were monitored using stopped-flow fluorescence spectroscopy. Bacillus stearothermophilus tyrosyl-tRNA synthetase binds d-tyrosine with an 8.5-fold lower affinity than that of l-tyrosine (K (D-Tyr)(d) = 102 microm) and exhibits a 3-fold decrease in the forward rate constant for the activation reaction (k (D-Tyr)(3) = 13 s(-1)). Furthermore, as is the case for l-tyrosine, tyrosyl-tRNA synthetase exhibits "half-of-the-sites" reactivity with respect to the binding and activation of D-tyrosine. Surprisingly, pyrophosphate binds to the TyrRS.d-Tyr-AMP intermediate with a 14-fold higher affinity than it binds to the TyrRS.l-Tyr-AMP intermediate (K (PPi)(d) = 0.043 for TyrRS.d-Tyr-AMP.PP(i)). tRNA(Tyr) binds with a slightly (2.3-fold) lower affinity to the TyrRS.d-Tyr-AMP intermediate than it does to the TyrRS.l-Tyr-AMP intermediate. The observation that the K (Tyr)(d) and k(3) values are similar for l- and d-tyrosine suggests that their side chains bind to tyrosyl-tRNA synthetase in similar orientations and that at least one of the carboxylate oxygen atoms in d-tyrosine is properly positioned for attack on the alpha-phosphate of ATP.


Subject(s)
Geobacillus stearothermophilus/enzymology , Tyrosine-tRNA Ligase/metabolism , Aminoacylation , Diphosphates/metabolism , Enzyme Activation , Kinetics , Models, Biological , Models, Molecular , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Tyrosine/analogs & derivatives , Tyrosine/metabolism
6.
J Microbiol Methods ; 52(1): 1-18, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12401222

ABSTRACT

Microbial lipases today occupy a place of prominence among biocatalysts owing to their ability to catalyze a wide variety of reactions in aqueous and non-aqueous media. The chemo-, regio- and enantio-specific behaviour of these enzymes has caused tremendous interest among scientists and industrialists. Lipases from a large number of bacterial, fungal and a few plant and animal sources have been purified to homogeneity. This has enabled their successful sequence determination and their three-dimensional structure leading to a better understanding of their unique structure-function relationships during various hydrolytic and synthetic reactions. This article presents a critical review of different strategies which have been employed for the purification of bacterial, yeast and fungal lipases. Since protein purification is normally done in a series of sequential steps involving a combination of different techniques, the effect of sequence of steps and the number of times each step is used is analyzed. This will prove to be of immense help while planning lipase purification. Novel purification technologies now available in this field are also reviewed.


Subject(s)
Bacteria/enzymology , Chemistry Techniques, Analytical/methods , Fungi/enzymology , Lipase/isolation & purification , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...