Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 14(6): 4728, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24257293

ABSTRACT

The AAPM has long advocated a consistent level of medical physics practice, and has published many recommendations and position statements toward that goal, such as Science Council Task Group reports related to calibration and quality assurance, Education Council and Professional Council Task Group reports related to education, training, and peer review, and Board-approved Position Statements related to the Scope of Practice, physicist qualifications, and other aspects of medical physics practice. Despite these concerted and enduring efforts, the profession does not have clear and concise statements of the acceptable practice guidelines for routine clinical medical physics. As accreditation of clinical practices becomes more common, Medical Physics Practice Guidelines (MPPGs) will be crucial to ensuring a consistent benchmark for accreditation programs. To this end, the AAPM has recently endorsed the development of MPPGs, which may be generated in collaboration with other professional societies. The MPPGs are intended to be freely available to the general public. Accrediting organizations, regulatory agencies, and legislators will be encouraged to reference these MPPGs when defining their respective requirements. MPPGs are intended to provide the medical community with a clear description of the minimum level of medical physics support that the AAPM would consider prudent in clinical practice settings. Support includes, but is not limited to, staffing, equipment, machine access, and training. These MPPGs are not designed to replace extensive Task Group reports or review articles, but rather to describe the recommended minimum level of medical physics support for specific clinical services. This article has described the purpose, scope, and process for the development of MPPGs.


Subject(s)
Clinical Competence , Health Physics/education , Health Physics/standards , Practice Guidelines as Topic/standards , Radiation Oncology/standards , Humans
2.
Med Phys ; 39(5): 2826-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22559654

ABSTRACT

Task Group 125 (TG 125) was charged with investigating the functionality of fluoroscopic automatic dose rate and image quality control logic in modern angiographic systems, paying specific attention to the spectral shaping filters and variations in the selected radiologic imaging parameters. The task group was also charged with describing the operational aspects of the imaging equipment for the purpose of assisting the clinical medical physicist with clinical set-up and performance evaluation. Although there are clear distinctions between the fluoroscopic operation of an angiographic system and its acquisition modes (digital cine, digital angiography, digital subtraction angiography, etc.), the scope of this work was limited to the fluoroscopic operation of the systems studied. The use of spectral shaping filters in cardiovascular and interventional angiography equipment has been shown to reduce patient dose. If the imaging control algorithm were programmed to work in conjunction with the selected spectral filter, and if the generator parameters were optimized for the selected filter, then image quality could also be improved. Although assessment of image quality was not included as part of this report, it was recognized that for fluoroscopic imaging the parameters that influence radiation output, differential absorption, and patient dose are also the same parameters that influence image quality. Therefore, this report will utilize the terminology "automatic dose rate and image quality" (ADRIQ) when describing the control logic in modern interventional angiographic systems and, where relevant, will describe the influence of controlled parameters on the subsequent image quality. A total of 22 angiography units were investigated by the task group and of these one each was chosen as representative of the equipment manufactured by GE Healthcare, Philips Medical Systems, Shimadzu Medical USA, and Siemens Medical Systems. All equipment, for which measurement data were included in this report, was manufactured within the three year period from 2006 to 2008. Using polymethylmethacrylate (PMMA) plastic to simulate patient attenuation, each angiographic imaging system was evaluated by recording the following parameters: tube potential in units of kilovolts peak (kVp), tube current in units of milliamperes (mA), pulse width (PW) in units of milliseconds (ms), spectral filtration setting, and patient air kerma rate (PAKR) as a function of the attenuator thickness. Data were graphically plotted to reveal the manner in which the ADRIQ control logic responded to changes in object attenuation. There were similarities in the manner in which the ADRIQ control logic operated that allowed the four chosen devices to be divided into two groups, with two of the systems in each group. There were also unique approaches to the ADRIQ control logic that were associated with some of the systems, and these are described in the report. The evaluation revealed relevant information about the testing procedure and also about the manner in which different manufacturers approach the utilization of spectral filtration, pulsed fluoroscopy, and maximum PAKR limitation. This information should be particularly valuable to the clinical medical physicist charged with acceptance testing and performance evaluation of modern angiographic systems.


Subject(s)
Advisory Committees , Angiography/methods , Cardiovascular System/diagnostic imaging , Fluoroscopy/methods , Logic , Radiation Dosage , Research Report , Angiography/standards , Automation , Fluoroscopy/standards , Humans , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...