Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 78(3): 483-97, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23664615

ABSTRACT

Regulation of neuronal excitability and cardiac excitation-contraction coupling requires the proper localization of L-type Ca²âº channels. We show that the actin-binding protein α-actinin binds to the C-terminal surface targeting motif of α11.2, the central pore-forming Ca(V)1.2 subunit, in order to foster its surface expression. Disruption of α-actinin function by dominant-negative or small hairpin RNA constructs reduces Ca(V)1.2 surface localization in human embryonic kidney 293 and neuronal cultures and dendritic spine localization in neurons. We demonstrate that calmodulin displaces α-actinin from their shared binding site on α11.2 upon Ca²âº influx through L-type channels, but not through NMDAR, thereby triggering loss of Ca(V)1.2 from spines. Coexpression of a Ca²âº-binding-deficient calmodulin mutant does not affect basal Ca(V)1.2 surface expression but inhibits its internalization upon Ca²âº influx. We conclude that α-actinin stabilizes Ca(V)1.2 at the plasma membrane and that its displacement by Ca²âº-calmodulin triggers Ca²âº-induced endocytosis of Ca(V)1.2, thus providing an important negative feedback mechanism for Ca²âº influx.


Subject(s)
Actinin/metabolism , Calcium Channels, L-Type/metabolism , Calmodulin/metabolism , Dendritic Spines/metabolism , Neurons/metabolism , Binding Sites , Brain/metabolism , Endocytosis/physiology , HEK293 Cells , Humans , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...