Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Genet Physiol ; 317(4): 205-15, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22539208

ABSTRACT

The avian automatic perching mechanism (APM) involves the automatic digital flexor mechanism (ADFM) and the digital tendon-locking mechanism (DTLM). When birds squat on a perch to sleep, the increased tendon travel distance due to flexion of the knee and ankle supposedly causes the toes to grip the perch (ADFM) and engage the DTLM so perching while sleeping involves no muscular effort. However, the knees and ankles of sleeping European starlings (Sturnus vulgaris) are only slightly flexed and, except for occasional balancing adjustments, the distal two-thirds of the toes are not flexed to grip a 6-mm-diameter perch. The cranial ankle angle (CAA) is ∼120° and the foot forms an inverted "U" that, with the mostly unflexed toes, provides a saddle-like structure so the bird balances its weight over the central pad of the foot (during day weight further back and digits actively grasp perch). In the region of the pad, the tendon sheath of many birds is unribbed, or only very slightly so, and it is always separated from the tendon of the M. flexor digitorum longus by tendons of the other toe flexor muscles. Passive leg flexion produces no toe flexion in anesthetized Starlings and only after 15-20 min, at the onset of rigor mortis, in freshly sacrificed Starlings. Anesthetized Starlings could not remain perched upon becoming unconscious (ADFM, DTLM intact). Birds whose digital flexor tendons were severed or the locking mechanism eliminated surgically (no ADFM or DTLM), so without ability to flex their toes, slept on the perch in a manner similar to unoperated Starlings (except CAA ∼90°-110°). Consequently, there is no APM or ADFM and the DTLM, although involved in lots of other activities, only acts in perching with active contraction of the digital flexor muscles.


Subject(s)
Lower Extremity/physiology , Muscle, Skeletal/physiology , Posture/physiology , Starlings/physiology , Tendons/physiology , Animals , Biomechanical Phenomena , Connecticut , Models, Biological , Muscle, Skeletal/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...