Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(11): e0011734, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37939123

ABSTRACT

Molecular surveillance of resistance is an increasingly important part of vector borne disease control programmes that utilise insecticides. The visceral leishmaniasis (VL) elimination programme in India uses indoor residual spraying (IRS) with the pyrethroid, alpha-cypermethrin to control Phlebotomus argentipes the vector of Leishmania donovani, the causative agent of VL. Prior long-term use of DDT may have selected for knockdown resistance (kdr) mutants (1014F and S) at the shared DDT and pyrethroid target site, which are common in India and can also cause pyrethroid cross-resistance. We monitored the frequency of these marker mutations over five years from 2017-2021 in sentinel sites in eight districts of north-eastern India covered by IRS. Frequencies varied markedly among the districts, though finer scale variation, among villages within districts, was limited. A pronounced and highly significant increase in resistance-associated genotypes occurred between 2017 and 2018, but with relative stability thereafter, and some reversion toward more susceptible genotypes in 2021. Analyses linked IRS with mutant frequencies suggesting an advantage to more resistant genotypes, especially when pyrethroid was under-sprayed in IRS. However, this advantage did not translate into sustained allele frequency changes over the study period, potentially because of a relatively greater net advantage under field conditions for a wild-type/mutant genotype than projected from laboratory studies and/or high costs of the most resistant genotype. Further work is required to improve calibration of each 1014 genotype with resistance, preferably using operationally relevant measures. The lack of change in resistance mechanism over the span of the study period, coupled with available bioassay data suggesting susceptibility, suggests that resistance has yet to emerge despite intensive IRS. Nevertheless, the advantage of resistance-associated genotypes with IRS and under spraying, suggest that measures to continue monitoring and improvement of spray quality are vital, and consideration of future alternatives to pyrethroids for IRS would be advisable.


Subject(s)
Insecticides , Leishmaniasis, Visceral , Phlebotomus , Pyrethrins , Animals , Phlebotomus/genetics , Leishmaniasis, Visceral/prevention & control , Leishmaniasis, Visceral/epidemiology , Insecticide Resistance/genetics , DDT , Insecticides/pharmacology , Pyrethrins/pharmacology , India/epidemiology
2.
CRISPR J ; 6(5): 419-429, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702604

ABSTRACT

The human malaria vector Anopheles gambiae is becoming increasingly resistant to insecticides, spurring the development of genetic control strategies. CRISPR-Cas9 gene drives can modify a population by creating double-stranded breaks at highly specific targets, triggering copying of the gene drive into the cut site ("homing"), ensuring its inheritance. The DNA repair mechanism responsible requires homology between the donor and recipient chromosomes, presenting challenges for the invasion of laboratory-developed gene drives into wild populations of target species An. gambiae species complex, which show high levels of genome variation. Two gene drives (vas2-5958 and zpg-7280) were introduced into three An. gambiae strains collected across Africa with 5.3-6.6% variation around the target sites, and the effect of this variation on homing was measured. Gene drive homing across different karyotypes of the 2La chromosomal inversion was also assessed. No decrease in gene drive homing was seen despite target site heterology, demonstrating the applicability of gene drives to wild populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...