Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Chem Inf Model ; 64(11): 4426-4435, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38804973

ABSTRACT

The polarization of periodically repeating systems is a discontinuous function of the atomic positions, a fact which seems at first to stymie attempts at their statistical learning. Two approaches to build models for bulk polarizations are compared: one in which a simple point charge model is used to preprocess the raw polarization to give a learning target that is a smooth function of atomic positions and the total polarization is learned as a sum of atom-centered dipoles and one in which instead the average position of Wannier centers around atoms is predicted. For a range of bulk aqueous systems, both of these methods perform perform comparatively well, with the former being slightly better but often requiring an extra effort to find a suitable point charge model. As a challenging test, we also analyze the performance of the models at the air-water interface. In this case, while the Wannier center approach delivers accurate predictions without further modifications, the preprocessing method requires augmentation with information from isolated water molecules to reach similar accuracy. Finally, we present a simple protocol to preprocess the polarizations in a data-driven way using a small number of derivatives calculated at a much lower level of theory, thus overcoming the need to find point charge models without appreciably increasing the computation cost. We believe that the training strategies presented here help the construction of accurate polarization models required for the study of the dielectric properties of realistic complex bulk systems and interfaces with ab initio accuracy.


Subject(s)
Water , Water/chemistry , Machine Learning , Models, Molecular , Electrons , Air , Models, Chemical
2.
Proteomics ; : e2300395, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963832

ABSTRACT

This pilot experiment examines if a loss in muscle proteostasis occurs in people with obesity and whether endurance exercise positively influences either the abundance profile or turnover rate of proteins in this population. Men with (n = 3) or without (n = 4) obesity were recruited and underwent a 14-d measurement protocol of daily deuterium oxide (D2 O) consumption and serial biopsies of vastus lateralis muscle. Men with obesity then completed 10-weeks of high-intensity interval training (HIIT), encompassing 3 sessions per week of cycle ergometer exercise with 1 min intervals at 100% maximum aerobic power interspersed by 1 min recovery periods. The number of intervals per session progressed from 4 to 8, and during weeks 8-10 the 14-d measurement protocol was repeated. Proteomic analysis detected 352 differences (p < 0.05, false discovery rate < 5%) in protein abundance and 19 (p < 0.05) differences in protein turnover, including components of the ubiquitin-proteasome system. HIIT altered the abundance of 53 proteins and increased the turnover rate of 22 proteins (p < 0.05) and tended to benefit proteostasis by increasing muscle protein turnover rates. Obesity and insulin resistance are associated with compromised muscle proteostasis, which may be partially restored by endurance exercise.

3.
Chem Sci ; 14(35): 9316-9327, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712025

ABSTRACT

Native mass spectrometry is a potent method for characterizing biomacromolecular assemblies. A critical aspect to extracting accurate mass information is the correct inference of the ion ensemble charge states. While a variety of experimental strategies and algorithms have been developed to facilitate this, virtually all approaches rely on the implicit assumption that any peaks in a native mass spectrum can be directly attributed to an underlying charge state distribution. Here, we demonstrate that this paradigm breaks down for several types of macromolecular protein complexes due to the intrinsic heterogeneity induced by the stochastic nature of their assembly. Utilizing several protein assemblies of adeno-associated virus capsids and ferritin, we demonstrate that these particles can produce a variety of unexpected spectral appearances, some of which appear superficially similar to a resolved charge state distribution. When interpreted using conventional charge inference strategies, these distorted spectra can lead to substantial errors in the calculated mass (up to ∼5%). We provide a novel analytical framework to interpret and extract mass information from these spectra by combining high-resolution native mass spectrometry, single particle Orbitrap-based charge detection mass spectrometry, and sophisticated spectral simulations based on a stochastic assembly model. We uncover that these mass spectra are extremely sensitive to not only mass heterogeneity within the subunits, but also to the magnitude and width of their charge state distributions. As we postulate that many protein complexes assemble stochastically, this framework provides a generalizable solution, further extending the usability of native mass spectrometry in the characterization of biomacromolecular assemblies.

4.
J Chem Phys ; 158(20)2023 May 28.
Article in English | MEDLINE | ID: mdl-37220200

ABSTRACT

Neural network potentials for kaolinite minerals have been fitted to data extracted from density functional theory calculations that were performed using the revPBE + D3 and revPBE + vdW functionals. These potentials have then been used to calculate the static and dynamic properties of the mineral. We show that revPBE + vdW is better at reproducing the static properties. However, revPBE + D3 does a better job of reproducing the experimental IR spectrum. We also consider what happens to these properties when a fully quantum treatment of the nuclei is employed. We find that nuclear quantum effects (NQEs) do not make a substantial difference to the static properties. However, when NQEs are included, the dynamic properties of the material change substantially.

5.
Nucleic Acids Res ; 51(13): 6509-6527, 2023 07 21.
Article in English | MEDLINE | ID: mdl-36940725

ABSTRACT

Telomere maintenance is a hallmark of malignant cells and allows cancers to divide indefinitely. In some cancers, this is achieved through the alternative lengthening of telomeres (ALT) pathway. Whilst loss of ATRX is a near universal feature of ALT-cancers, it is insufficient in isolation. As such, other cellular events must be necessary - but the exact nature of the secondary events has remained elusive. Here, we report that trapping of proteins (such as TOP1, TOP2A and PARP1) on DNA leads to ALT induction in cells lacking ATRX. We demonstrate that protein-trapping chemotherapeutic agents, such as etoposide, camptothecin and talazoparib, induce ALT markers specifically in ATRX-null cells. Further, we show that treatment with G4-stabilising drugs cause an increase in trapped TOP2A levels which leads to ALT induction in ATRX-null cells. This process is MUS81-endonuclease and break-induced replication dependent, suggesting that protein trapping leads to replication fork stalling, with these forks being aberrantly processed in the absence of ATRX. Finally, we show ALT-positive cells harbour a higher load of genome-wide trapped proteins, such as TOP1, and knockdown of TOP1 reduced ALT activity. Taken together, these findings suggest that protein trapping is a fundamental driving force behind ALT-biology in ATRX-deficient malignancies.


A key feature of all cancer cells is their ability to divide indefinitely, and this is dependent on circumvention of telomere shortening through induction of a telomere maintenance mechanism, such as the telomerase-independent, Alternative Lengthening of Telomeres (ALT) pathway. The ALT pathway is characterised by loss of the ATRX chromatin remodeler. The current study provides evidence that, in the absence of ATRX, increased trapping of proteins on DNA leads to replication fork stalling and collapse. At telomeres, this leads to ALT pathway activity. These results help to better understand ALT tumours and might, eventually, be instrumental in developing new therapeutic strategies.


Subject(s)
Neoplasms , Telomere , Humans , DNA , Neoplasms/genetics , Telomerase/genetics , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
6.
J Phys Chem Lett ; 14(6): 1542-1547, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36745462

ABSTRACT

Recent work has shown that the dynamics of hydrogen bonds in pure clays are affected by nuclear quantum fluctuations, with different effects for the hydrogen bonds holding different layers of the clay together and for those within the same layer. At the clay-water interface there is an even wider range of types of hydrogen bond, suggesting that the quantum effects may be yet more varied. We apply classical and thermostated ring polymer molecular dynamics simulations to show that nuclear quantum effects accelerate hydrogen-bond dynamics to varying degrees. By interpreting the results in terms of the extended jump model of hydrogen-bond switching, we can understand the origins of these effects in terms of changes in the quantum kinetic energy of hydrogen atoms during an exchange. We also show that the extended jump mechanism is applicable not only to the hydrogen bonds involving water, but also those internal to the clay.

7.
J Chem Phys ; 156(8): 084702, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232185

ABSTRACT

Hydrogen bonds are of paramount importance in the chemistry of clays, mediating the interaction between the clay surface and water, and for some materials between separate layers. It is well-established that the accuracy of a computational model for clays depends on the level of theory at which the electronic structure is treated. However, for hydrogen-bonded systems, the motion of light H nuclei on the electronic potential energy surface is often affected by quantum delocalization. Using path integral molecular dynamics, we show that nuclear quantum effects lead to a relatively small change in the structure of clays, but one that is comparable to the variation incurred by treating the clay at different levels of electronic structure theory. Accounting for quantum effects weakens the hydrogen bonds in clays, with H-bonds between different layers of the clay affected more than those within the same layer; this is ascribed to the fact that the confinement of an H atom inside a layer is independent of its participation in hydrogen-bonding. More importantly, the weakening of hydrogen bonds by nuclear quantum effects causes changes in the vibrational spectra of these systems, significantly shifting the O-H stretching peaks and meaning that in order to fully understand these spectra by computational modeling, both electronic and nuclear quantum effects must be included. We show that after reparameterization of the popular clay forcefield CLAYFF, the O-H stretching region of their vibrational spectra better matches the experimental one, with no detriment to the model's agreement with other experimental properties.

8.
J Cell Physiol ; 237(7): 2862-2876, 2022 07.
Article in English | MEDLINE | ID: mdl-35312042

ABSTRACT

We investigated whether 20 candidate single nucleotide polymorphisms (SNPs) were associated with in vivo exercise-induced muscle damage (EIMD), and with an in vitro skeletal muscle stem cell wound healing assay. Sixty-five young, untrained Caucasian adults performed 120 maximal eccentric knee-extensions on an isokinetic dynamometer to induce EIMD. Maximal voluntary isometric/isokinetic knee-extensor torque, knee joint range of motion (ROM), muscle soreness, serum creatine kinase activity and interleukin-6 concentration were assessed before, directly after and 48 h after EIMD. Muscle stem cells were cultured from vastus lateralis biopsies from a separate cohort (n = 12), and markers of repair were measured in vitro. Participants were genotyped for all 20 SNPs using real-time PCR. Seven SNPs were associated with the response to EIMD, and these were used to calculate a total genotype score, which enabled participants to be segregated into three polygenic groups: 'preferential' (more 'protective' alleles), 'moderate', and 'non-preferential'. The non-preferential group was consistently weaker than the preferential group (1.93 ± 0.81 vs. 2.73 ± 0.59 N ∙ m/kg; P = 9.51 × 10-4 ) and demonstrated more muscle soreness (p = 0.011) and a larger decrease in knee joint ROM (p = 0.006) following EIMD. Two TTN-AS1 SNPs in linkage disequilibrium were associated with in vivo EIMD (rs3731749, p ≤ 0.005) and accelerated muscle stem cell migration into the artificial wound in vitro (rs1001238, p ≤ 0.006). Thus, we have identified a polygenic profile, linked with both muscle weakness and poorer recovery following EIMD. Moreover, we provide evidence for a novel TTN gene-cell-skeletal muscle mechanism that may help explain some of the interindividual variability in the response to EIMD.


Subject(s)
Exercise , Muscle, Skeletal/physiology , Myalgia , Adult , Exercise/physiology , Humans , Muscle, Skeletal/pathology , Myalgia/genetics , Myalgia/pathology , Polymorphism, Single Nucleotide , Quadriceps Muscle/cytology , Quadriceps Muscle/physiology , Stem Cells/cytology , Torque
9.
Front Physiol ; 12: 750283, 2021.
Article in English | MEDLINE | ID: mdl-34858205

ABSTRACT

Exercise referral schemes (ERS) are used to promote physical activity within primary care. Traditionally, ERS are conducted in a gym or leisure-center setting, with exercise prescriptions based on moderate-intensity continuous training (MICT). Home-based high-intensity interval training (Home-HIIT) has the potential to reduce perceived barriers to exercise, including lack of time and access to facilities, compared to traditional MICT prescription used with ERS and improve health related outcomes. We hypothesized that Home-HIIT would mediate greater improvement in cardiorespiratory fitness (CRF) by virtue of greater adherence and compliance to the exercise prescription, compared to MICT. Methods: Patients enrolled on an ERS (Liverpool, United Kingdom) were recruited for a pragmatic trial. Participants self-selected either 12 weeks of MICT (45-135 min/week at 50-70% HRmax) or Home-HIIT (4-9 min × 1 min intervals at ≥80% of HRmax, interspersed with 1 min rest). The primary outcome was the change in CRF (VO2 peak) at post-intervention (12 weeks) and follow-up (3-month post intervention), using intention-to-treat analysis. Results: 154 participants (age 48 ± 10y; BMI 30.5 ± 6.1 kg/m2) were recruited between October 2017 and March 2019, 87 (56%) participants chose Home-HIIT and 67 (44%) MICT. VO2 peak increased post-intervention in both groups (MICT 3.9 ± 6.0 ml.kg-1.min-1, Home-HIIT 2.8 ± 4.5 ml.kg-1.min-1, P < 0.001), and was maintained at follow-up (P < 0.001). Fat mass was only reduced post MICT (MICT -1.5 ± 6.3 kg, P < 0.05, Home-HIIT -0.2 ± 2.0 kg, P = 1.00), but the reduction was not maintained at follow-up (MICT -0.6 ± 5.1 kg, Home-HIIT 0.0 ± 2.2 kg, P > 0.05). Adherence to the prescribed programs was similar (MICT 48 ± 35%, Home-HIIT 39 ± 36%, P = 0.77). Conclusion: This is the first study to evaluate the use of Home-HIIT for individuals in a primary care setting. Contrary to our hypothesis, adherence to both exercise prescriptions was poor, and CRF improved to a similar extent in both groups with improvements maintained at 3-month follow-up. We provide evidence that, although not superior, Home-HIIT could be an effective and popular additional exercise choice for patients within primary care based ERS. Clinical Trial Registration: [ClinicalTrials.gov], identifier [NCT04553614].

10.
PLoS One ; 16(9): e0257685, 2021.
Article in English | MEDLINE | ID: mdl-34587217

ABSTRACT

OBJECTIVE: High intensity interval training (HIIT) is a time-efficient exercise modality to improve cardiorespiratory fitness, and has recently been popularised by social media influencers. However, little is known regarding acute physiological and perceptual responses to these online protocols compared to HIIT protocols used within research. The aim was to investigate acute physiological, perceptual and motivational responses to two HIIT protocols popular on social media, and compare these to two evidence-based protocols. METHODS: Twenty-seven recreationally active (>1 exercise session /week) participants (Age: 22±3y, BMI: 24.3±2.4) completed a randomised cross-over study, whereby each participant completed four HIIT protocols, two already established in research (Ergo-60:60 (cycling 10x60s at 100%Wmaxwith 60s rest), BW-60:60 (body-weight exercises 10x60swith 60s rest)) and two promoted on social media (SM-20:10 (body-weight exercises 20x20swith 10s rest) and SM-40:20 (body-weight exercises 15x40s with 20s rest)). Blood lactate, heart rate (HR), feeling scale (FS), felt arousal scale (FSA), enjoyment and perceived competence were measured in response to each protocol. RESULTS: Significant differences were observed between BW-60:60 and SM-20:10 for the proportion of intervals meeting the ACSM high-intensity exercise criterion (>80% of HRmax) (BW-60:60 93±10%, SM-20:10 74±20%, P = 0.039) and change in lactate (BW-60:60 +7.8±3.7mmol/L, SM-20:10 +5.5±2.6mmol/L, P = 0.001). The percentage of time spent above the criterion HR was also significantly lower in SM-20:10 compared to all other protocols (Ergo-60:60 13.9±4.9min, BW-60:60 13.5±3.5min, SM-40:20 12.1±2.4min, SM-20:10 7.7±3.1, P<0.05). No differences were observed in lowest reported FS between protocols (P = 0.268), but FS decreased linearly throughout Ergo-60:60 and BW-60:60 (first vs. last interval P<0.05), but not in SM-20:10 or SM-40:20 (P>0.05). Enjoyment was higher upon completion of BW-60:60 compared to Ergo-60:60 and SM-40:20 (P<0.05). CONCLUSIONS: This study shows that HIIT protocols available on social media offer an interesting real-world alternative for promoting exercise participation. Future studies should continue to investigate these highly popular and practical HIIT protocols.


Subject(s)
Cardiorespiratory Fitness/physiology , Heart/physiology , High-Intensity Interval Training/methods , Lactic Acid/blood , Patient Participation/statistics & numerical data , Adult , Body Weight , Cross-Over Studies , Evidence-Based Medicine , Female , Health Promotion , Heart Rate , Humans , Male , Random Allocation , Social Media , Young Adult
11.
J Phys Chem Lett ; 12(37): 9108-9114, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34523941

ABSTRACT

Vibrational spectroscopy is key in probing the interplay between the structure and dynamics of aqueous systems. To map different regions of experimental spectra to the microscopic structure of a system, it is important to combine them with first-principles atomistic simulations that incorporate the quantum nature of nuclei. Here we show that the large cost of calculating the quantum vibrational spectra of aqueous systems can be dramatically reduced compared with standard path integral methods by using approximate quantum dynamics based on high-order path integrals. Together with state-of-the-art machine-learned electronic properties, our approach gives an excellent description not only of the infrared and Raman spectra of bulk water but also of the 2D correlation and the more challenging sum-frequency generation spectra of the water-air interface. This paves the way for understanding complex interfaces such as water encapsulated between or in contact with hydrophobic and hydrophilic materials through robust and inexpensive surface-sensitive and multidimensional spectra with first-principles accuracy.

12.
Eur J Haematol ; 107(2): 181-189, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33829584

ABSTRACT

The rate of invasive fungal infection (IFI) in patients with myelodysplasia (MDS) and acute myeloid leukemia (AML) receiving 5-azacytidine is incompletely defined and published recommendations for mold-active fungal prophylaxis in such patients vary according to source. We performed a retrospective cohort study in order to identify contemporary IFI rates and infection-related mortality in relation to known risk factors and the use of antifungal prophylaxis. One hundred and seventeen patients receiving 5-azacytidine for MDS and low blast count AML were identified, of whom 71 (61%) received antifungal prophylaxis. The IFI rate was 7.7% across the entire cohort: 5.6% in those receiving prophylaxis vs 10.9% in the subgroup who did not (P = .30). The presence of neutropenia at three months of treatment was associated with increased IFI risk (hazard ratio [HR] 8.29; (95% confidence interval [CI)] 1.61-42.6; P = .01), and on multivariate analysis, IFI was independently associated with increased all-cause mortality risk (HR 8.37; 95% CI 3.67 - 19.11; P < .0001). These data further highlight the risk of IFI in this population and support the use of mold-active prophylaxis in neutropenic patients receiving 5-azacytidine for MDS and AML.


Subject(s)
Azacitidine/adverse effects , Invasive Fungal Infections/etiology , Leukemia, Myeloid, Acute/complications , Myelodysplastic Syndromes/complications , Aged , Aged, 80 and over , Antifungal Agents/therapeutic use , Azacitidine/therapeutic use , Disease Susceptibility , Female , Humans , Incidence , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/epidemiology , Invasive Fungal Infections/prevention & control , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/epidemiology , Male , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/epidemiology , Neutropenia/diagnosis , Neutropenia/epidemiology , Neutropenia/etiology , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk Assessment , Risk Factors , Treatment Outcome
13.
J Physiol ; 599(11): 2823-2849, 2021 06.
Article in English | MEDLINE | ID: mdl-33772787

ABSTRACT

KEY POINTS: Muscle glycogen and intramuscular triglycerides (IMTG, stored in lipid droplets) are important energy substrates during prolonged exercise. Exercise-induced changes in lipid droplet (LD) morphology (i.e. LD size and number) have not yet been studied under nutritional conditions typically adopted by elite endurance athletes, that is, after carbohydrate (CHO) loading and CHO feeding during exercise. We report for the first time that exercise reduces IMTG content in both central and peripheral regions of type I and IIa fibres, reflective of decreased LD number in both fibre types whereas reductions in LD size were exclusive to type I fibres. Additionally, CHO feeding does not alter subcellular IMTG utilisation, LD morphology or muscle glycogen utilisation in type I or IIa/II fibres. In the absence of alterations to muscle fuel selection, CHO feeding does not attenuate cell signalling pathways with regulatory roles in mitochondrial biogenesis. ABSTRACT: We examined the effects of carbohydrate (CHO) feeding on lipid droplet (LD) morphology, muscle glycogen utilisation and exercise-induced skeletal muscle cell signalling. After a 36 h CHO loading protocol and pre-exercise meal (12 and 2 g kg-1 , respectively), eight trained males ingested 0, 45 or 90 g CHO h-1 during 180 min cycling at lactate threshold followed by an exercise capacity test (150% lactate threshold). Muscle biopsies were obtained pre- and post-completion of submaximal exercise. Exercise decreased (P < 0.01) glycogen concentration to comparable levels (∼700 to 250 mmol kg-1 DW), though utilisation was greater in type I (∼40%) versus type II fibres (∼10%) (P < 0.01). LD content decreased in type I (∼50%) and type IIa fibres (∼30%) (P < 0.01), with greater utilisation in type I fibres (P < 0.01). CHO feeding did not affect glycogen or IMTG utilisation in type I or II fibres (all P > 0.05). Exercise decreased LD number within central and peripheral regions of both type I and IIa fibres, though reduced LD size was exclusive to type I fibres. Exercise induced (all P < 0.05) comparable AMPKThr172 (∼4-fold), p53Ser15 (∼2-fold) and CaMKIIThr268 phosphorylation (∼2-fold) with no effects of CHO feeding (all P > 0.05). CHO increased exercise capacity where 90 g h-1 (233 ± 133 s) > 45 g h-1 (156 ± 66 s; P = 0.06) > 0 g h-1 (108 ± 54 s; P = 0.03). In conditions of high pre-exercise CHO availability, we conclude CHO feeding does not influence exercise-induced changes in LD morphology, glycogen utilisation or cell signalling pathways with regulatory roles in mitochondrial biogenesis.


Subject(s)
AMP-Activated Protein Kinases , Lipid Droplets , Dietary Carbohydrates , Exercise Tolerance , Humans , Male , Muscle, Skeletal , Tumor Suppressor Protein p53
14.
Front Physiol ; 12: 619447, 2021.
Article in English | MEDLINE | ID: mdl-33679435

ABSTRACT

The methylome and transcriptome signatures following exercise that are physiologically and metabolically relevant to sporting contexts such as team sports or health prescription scenarios (e.g., high intensity interval training/HIIT) has not been investigated. To explore this, we performed two different sport/exercise relevant high-intensity running protocols in five male sport team members using a repeated measures design of: (1) change of direction (COD) versus; (2) straight line (ST) running exercise with a wash-out period of at least 2 weeks between trials. Skeletal muscle biopsies collected from the vastus lateralis 30 min and 24 h post exercise, were assayed using 850K methylation arrays and a comparative analysis with recent (subject-unmatched) sprint and acute aerobic exercise meta-analysis transcriptomes was performed. Despite COD and ST exercise being matched for classically defined intensity measures (speed × distance and number of accelerations/decelerations), COD exercise elicited greater movement (GPS-Playerload), physiological (HR), metabolic (lactate) as well as central and peripheral (differential RPE) exertion measures compared with ST exercise, suggesting COD exercise evoked a higher exercise intensity. The exercise response alone across both conditions evoked extensive alterations in the methylome 30 min and 24 h post exercise, particularly in MAPK, AMPK and axon guidance pathways. COD evoked a considerably greater hypomethylated signature across the genome compared with ST exercise, particularly at 30 min post exercise, enriched in: Protein binding, MAPK, AMPK, insulin, and axon guidance pathways. Comparative methylome analysis with sprint running transcriptomes identified considerable overlap, with 49% of genes that were altered at the expression level also differentially methylated after COD exercise. After differential methylated region analysis, we observed that VEGFA and its downstream nuclear transcription factor, NR4A1 had enriched hypomethylation within their promoter regions. VEGFA and NR4A1 were also significantly upregulated in the sprint transcriptome and meta-analysis of exercise transcriptomes. We also confirmed increased gene expression of VEGFA, and considerably larger increases in the expression of canonical metabolic genes PPARGC1A (that encodes PGC1-α) and NR4A3 in COD vs. ST exercise. Overall, we demonstrate that increased physiological/metabolic load via COD exercise in human skeletal muscle evokes considerable epigenetic modifications that are associated with changes in expression of genes responsible for adaptation to exercise.

15.
J Occup Environ Med ; 63(1): 44-56, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33122540

ABSTRACT

OBJECTIVE: To pilot a multicomponent intervention to sit less and move more, with (SLAMM+) and without (SLAMM) height-adjustable workstations, in contact center call agents. METHODS: Agents were individually randomized to SLAMM or SLAMM+ in this 10-month, parallel, open-label, pilot trial. Mixed-methods assessed response, recruitment, retention, attrition and completion rates, adverse effects, trial feasibility and acceptability, preliminary effectiveness on worktime sitting, and described secondary outcomes. RESULTS: The participant recruitment rate, and randomization, data collection, and interventions were mostly acceptable. Refinements to organization recruitment were identified. High staff turnover negatively impacted retention and completion rates. The multicomponent intervention with height-adjustable workstations has potential to reduce sitting time at work. CONCLUSIONS: The demonstrated findings will help prepare for a future randomized controlled trial designed to assess the effect of the interventions.


Subject(s)
Sedentary Behavior , Sitting Position , Humans , Pilot Projects , Workplace
16.
Eur J Nutr ; 60(3): 1605-1617, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32789769

ABSTRACT

PURPOSE: High-fat, high-calorie (HFHC) diets have been used as a model to investigate lipid-induced insulin resistance. Short-term HFHC diets reduce insulin sensitivity in young healthy males, but to date, no study has directly compared males and females to elucidate sex-specific differences in the effects of a HFHC diet on functional metabolic and cardiovascular outcomes. METHODS: Eleven males (24 ± 4 years; BMI 23 ± 2 kg.m-2; V̇O2 peak 62.3 ± 8.7 ml.min-1.kg-1FFM) were matched to 10 females (25 ± 4 years; BMI 23 ± 2 kg.m-2; V̇O2 peak 58.2 ± 8.2 ml.min-1.kg-1FFM). Insulin sensitivity, measured via oral glucose tolerance test, metabolic flexibility, arterial stiffness, body composition and blood lipids and liver enzymes were measured before and after 7 days of a high-fat (65% energy) high-calorie (+ 50% kcal) diet. RESULTS: The HFHC diet did not change measures of insulin sensitivity, metabolic flexibility or arterial stiffness in either sex. There was a trend towards increased total body fat mass (kg) after the HFHC diet (+ 1.8% and + 2.3% for males and females, respectively; P = 0.056). In contrast to females, males had a significant increase in trunk to leg fat mass ratio (+ 5.1%; P = 0.005). CONCLUSION: Lean, healthy young males and females appear to be protected from the negative cardio-metabolic effects of a 7-day HFHC diet. Future research should use a prolonged positive energy balance achieved via increased energy intake and reduced energy expenditure to exacerbate negative metabolic and cardiovascular functional outcomes to determine whether sex-specific differences exist under more metabolically challenging conditions.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Adult , Body Composition , Cardiovascular Diseases/prevention & control , Diet, High-Fat/adverse effects , Energy Intake , Female , Glucose Tolerance Test , Humans , Male , Young Adult
17.
Proteomes ; 8(3)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859009

ABSTRACT

We investigated whether diurnal differences in muscle force output are associated with the post-translational state of muscle proteins. Ten physically active men (mean ± SD; age 26.7 ± 3.7 y) performed experimental sessions in the morning (08:00 h) and evening (17:00 h), which were counterbalanced in order of administration and separated by at least 72 h. Knee extensor maximal voluntary isometric contraction (MVIC) force and peak rate of force development (RFD) were measured, and samples of vastus lateralis were collected immediately after exercise. MVIC force was greater in the evening (mean difference of 67 N, 10.2%; p < 0.05). Two-dimensional (2D) gel analysis encompassed 122 proteoforms and discovered 6 significant (p < 0.05; false discovery rate [FDR] = 10%) diurnal differences. Phosphopeptide analysis identified 1693 phosphopeptides and detected 140 phosphopeptides from 104 proteins that were more (p < 0.05, FDR = 22%) phosphorylated in the morning. Myomesin 2, muscle creatine kinase, and the C-terminus of titin exhibited the most robust (FDR < 10%) diurnal differences. Exercise in the morning, compared to the evening, coincided with a greater phosphorylation of M-band-associated proteins in human muscle. These protein modifications may alter the M-band structure and disrupt force transmission, thus potentially explaining the lower force output in the morning.

18.
Exp Physiol ; 105(11): 1882-1894, 2020 11.
Article in English | MEDLINE | ID: mdl-32862503

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the absolute level of pre-exercise glycogen concentration required to augment the exercise-induced signalling response regulating mitochondrial biogenesis? What is the main finding and its importance? Commencing high-intensity endurance exercise with reduced pre-exercise muscle glycogen concentrations confers no additional benefit to the early signalling responses that regulate mitochondrial biogenesis. ABSTRACT: We examined the effects of graded muscle glycogen on the subcellular location and protein content of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mRNA expression of genes associated with the regulation of mitochondrial biogenesis and substrate utilisation in human skeletal muscle. In a repeated measures design, eight trained male cyclists completed acute high-intensity interval (HIT) cycling (8 × 5 min at 80% peak power output) with graded concentrations of pre-exercise muscle glycogen. Following initial glycogen-depleting exercise, subjects ingested  2 g kg-1  (L-CHO), 6 g kg-1 (M-CHO) or 14 g kg-1 (H-CHO) of carbohydrate during a 36 h period, such that exercise was commenced with graded (P < 0.05) muscle glycogen concentrations (mmol (kg dw)-1 : H-CHO, 531 ± 83; M-CHO, 332 ± 88; L-CHO, 208 ± 79). Exercise depleted muscle glycogen to <300 mmol (kg dw)-1 in all trials (mmol (kg dw)-1 : H-CHO, 270 ± 88; M-CHO, 173 ± 74; L-CHO, 100 ± 42) and induced comparable increases in nuclear AMPK protein content (∼2-fold) and PGC-1α (∼5-fold), p53 (∼1.5-fold) and carnitine palmitoyltransferase 1 (∼2-fold) mRNA between trials (all P < 0.05). The magnitude of increase in PGC-1α mRNA was also positively correlated with post-exercise glycogen concentration (P < 0.05). In contrast, neither exercise nor carbohydrate availability affected the subcellular location of PGC-1α protein or PPAR, SCO2, SIRT1, DRP1, MFN2 or CD36 mRNA. Using a sleep-low, train-low model with a high-intensity endurance exercise stimulus, we conclude that pre-exercise muscle glycogen does not modulate skeletal muscle cell signalling.


Subject(s)
AMP-Activated Protein Kinases , Glycogen , AMP-Activated Protein Kinases/metabolism , Exercise/physiology , Glycogen/metabolism , Humans , Male , Muscle, Skeletal/physiology , Nuclear Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
19.
Histochem Cell Biol ; 154(4): 369-382, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32627050

ABSTRACT

Despite over 50 years of research, a comprehensive understanding of how intramuscular triglyceride (IMTG) is stored in skeletal muscle and its contribution as a fuel during exercise is lacking. Immunohistochemical techniques provide information on IMTG content and lipid droplet (LD) morphology on a fibre type and subcellular-specific basis, and the lipid dye Oil Red O (ORO) is commonly used to achieve this. BODIPY 493/503 (BODIPY) is an alternative lipid dye with lower background staining and narrower emission spectra. Here we provide the first quantitative comparison of BODIPY and ORO for investigating exercise-induced changes in IMTG content and LD morphology on a fibre type and subcellular-specific basis. Estimates of IMTG content were greater when using BODIPY, which was predominantly due to BODIPY detecting a larger number of LDs, compared to ORO. The subcellular distribution of intramuscular lipid was also dependent on the lipid dye used; ORO detects a greater proportion of IMTG in the periphery (5 µm below cell membrane) of the fibre, whereas IMTG content was higher in the central region using BODIPY. In response to 60 min moderate-intensity cycling exercise, IMTG content was reduced in both the peripheral (- 24%) and central region (- 29%) of type I fibres (P < 0.05) using BODIPY, whereas using ORO, IMTG content was only reduced in the peripheral region of type I fibres (- 31%; P < 0.05). As well as highlighting some methodological considerations herein, our investigation demonstrates that important differences exist between BODIPY and ORO for detecting and quantifying IMTG on a fibre type and subcellular-specific basis.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Lipids/chemistry , Muscle, Skeletal/chemistry , Triglycerides/metabolism , Humans , Immunohistochemistry , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Male , Muscle, Skeletal/metabolism , Triglycerides/analysis , Young Adult
20.
Med Sci Sports Exerc ; 52(9): 1966-1975, 2020 09.
Article in English | MEDLINE | ID: mdl-32168106

ABSTRACT

PURPOSE: This study aimed to quantify net glycogen utilization in the vastus lateralis (VL) and gastrocnemius (G) of male (n = 11) and female (n = 10) recreationally active runners during three outdoor training sessions. METHODS: After 2-d standardization of carbohydrate intakes (6 g·kg body mass per day), glycogen was assessed before and after 1) a 10-mile road run (10-mile) at lactate threshold, 2) 8 × 800-m track intervals (8 × 800 m) at velocity at V˙O2max, and 3) 3 × 10-min track intervals (3 × 10 min) at lactate turnpoint. RESULTS: Resting glycogen concentration was lower in the G of female compared with males (P < 0.001) runners, although no sex differences were apparent in the VL (P = 0.40). Within the G and VL of male runners, net glycogen utilization differed between training sessions where 10 miles was greater than both track sessions (all comparisons, P < 0.05). In contrast, net glycogen utilization in female runners was not different between training sessions in either muscle (all comparisons, P > 0.05). Net glycogen utilization was greater in male than in female runners in both VL (P = 0.02) and G (P = 0.07) during the 10-mile road run. With the exception of male runners during the 3 × 10-min protocol (P = 0.28), greater absolute glycogen utilization was observed in the G versus the VL muscle in both male and female runners and during all training protocols (all comparisons, P < 0.05). CONCLUSION: Data demonstrate that 1) prolonged steady-state running necessitates a greater glycogen requirement than shorter but higher-intensity track running sessions, 2) female participants display evidence of reduced resting muscle glycogen concentration and net muscle glycogen utilization when compared with male participants, and 3) net glycogen utilization is higher in the G muscle compared with the VL.


Subject(s)
Glycogen/metabolism , Muscle, Skeletal/metabolism , Physical Endurance/physiology , Running/physiology , Sex Characteristics , Adult , Blood Glucose/metabolism , Fatty Acids, Nonesterified/blood , Female , Glycerol/blood , Humans , Lactic Acid/blood , Male , Quadriceps Muscle/metabolism , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...