Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PeerJ ; 11: e16090, 2023.
Article in English | MEDLINE | ID: mdl-38025751

ABSTRACT

Closely related species with ecological similarity often aggressively compete for a common, limited resource. This competition is usually asymmetric and results in one species being behaviorally dominant over the other. Trade-offs between traits for behavioral dominance and alternative strategies can result in different methods of resource acquisition between the dominant and subordinate species, with important consequences for resource partitioning and community structure. Body size is a key trait thought to commonly determine behavioral dominance. Priority effects (i.e., which species arrives at the resource first), however, can also determine the outcome of interactions, as can species-specific traits besides size that give an advantage in aggressive contests (e.g., weapons). Here, we test among these three alternative hypotheses of body size, priority effects, and species identity for what determines the outcome of competitive interactions among two species of burying beetles, Nicrophorus orbicollis and N. pustulatus. Both overlap in habitat and seasonality and exhibit aggressive competition over a shared breeding resource of small vertebrate carrion. In trials, we simulated what would happen upon the beetles' discovery of a carcass in nature by placing a carcass and one beetle of each species in a container and observing interactions over 13 h trials (n = 17 trials). We recorded and categorized interactions between beetles and the duration each individual spent in contact with the carcass (the key resource) to determine which hypothesis predicted trial outcomes. Body size was our only significant predictor; the largest species won most aggressive interactions and spent more time in contact with the carcass. Our results offer insight into the ecology and patterns of resource partitioning of N. orbicollis and N. pustulatus, the latter of which is unique among local Nicrophorus for being a canopy specialist. N. pustulatus is also unique among all Nicrophorus in using snake eggs, in addition to other carrion, as a breeding resource. Our results highlight the importance of body size and related trade-offs in ecology and suggest parallels with other coexisting species and communities.


Subject(s)
Coleoptera , Animals , Aggression , Ecosystem , Body Size , Snakes
2.
J Am Chem Soc ; 140(1): 219-228, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29228767

ABSTRACT

The so-called "Lewis pair" is a ubiquitous phenomenon in chemistry and is often used as an intuitive construct to predict and rationalize chemical structure and behavior. Concepts from the very general Valence Shell Electron Pair Repulsion (VSEPR) model to the most esoteric reaction mechanism routinely rely on the notion that electrons tend to exist in pairs and that these pairs can be thought of as being localized to a particular region of space. It is precisely this localization that allows one to intuit how these pairs might behave, generally speaking, so that reasonable predictions may be made regarding molecular structure, intermolecular interactions, property trends, and reaction mechanisms, etc. Of course, it is rather unfortunate that the Lewis model is entirely qualitative and yields no information regarding how any specific electron pair is distributed. Here we demonstrate a novel electronic structure analysis technique that predicts and analyzes precise quantitative details about the relative and absolute distribution of individual electron pairs. This Single Electron Pair Distribution Analysis (SEPDA) reveals quantitative details about the distribution of the well-known Lewis pairs, such as how they are distributed in space and how their relative velocities change in various chemical contexts. We show that these distributions allow one to image the explicitly pairwise electronic behavior of bonds and lone pairs. We further demonstrate how this electronic behavior changes with several conditions to explore the nature of the covalent chemical bond, non-covalent interactions, bond formation, and exotic 3-center-2-electron species. It is shown that indications of the strength of bonded and non-bonded interactions may also be gleaned from such distributions and SEPDA can be used as a tool to differentiate between interaction types. We anticipate that SEPDA will be of broad utility in a wide variety of chemical contexts because it affords a very detailed, visual and intuitive analysis technique that is generally applicable.

3.
J Phys Chem A ; 119(31): 8537-46, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26161497

ABSTRACT

We assess the performance of six density functionals, each paired with one of five basis sets (a total of 30 model chemistries) for the prediction of geometrical parameters in the coordination sphere of nine vanadium complexes (for a total of 270 structural analyses). We find that results are generally consistent over the range of functionals tested and that none fail drastically. For bond lengths, the model chemistry PBE0/QZVP performed the best overall (having a MAD of only 0.02 Å from experiment) yet PBE0/6-31G* provides nearly identical results. For bond angles, PBE0 also performed best overall and, when combined with the 6-31G* basis, produces one of the smallest error distributions of any model chemistry tested. We subsequently applied the PBE0/6-31G* model chemistry to understanding the mechanism of action of a [BIMPY]VCl3 catalyst in the polymerization of styrene (Sty) and vinyl acetate (VAc). Our results indicate that the [BIMPY]VCl3 catalyst operates through a unique, two-step reaction pathway: dehalogenation to form a reactive V(II) intermediate (a highly favorable process) followed by a potentially reversible OMRP to control the polymerization of vinyl acetate. Control over vinyl acetate is facilitated by both the higher reactivity of the radical species and the participation of the ester group in the trapping step. In both the Sty and VAc cases we predict relatively poor control of the polymerization with the vanadium catalyst, which is in good agreement with our experimental results.

4.
Phys Chem Chem Phys ; 16(46): 25548-56, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25351183

ABSTRACT

We present an application of the recently introduced Localized Pair Model (LPM) [Z. A. Zielinksi and J. K. Pearson, Comput. Theor. Chem., 2013, 1003, 7990] to characterize and quantify properties of the chemical bond in a series of substituted benzoic acid molecules. By computing interelectronic distribution functions for doubly-occupied Edmiston-Ruedenberg localized molecular orbitals (LMOs), we show that chemically intuitive electron pairs may be uniquely classified and bond strength may be predicted with remarkable accuracy. Specifically, the HF/u6-311G(d,p) level (where u denotes a complete uncontraction of the basis set) is used to generate the relevant LMOs and their respective interelectronic distribution functions can be linearly correlated to the well-known Hammett σp or σm parameters with near-unity correlation coefficients.

SELECTION OF CITATIONS
SEARCH DETAIL
...