Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 13(14): 6764-6771, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33885478

ABSTRACT

The architectural design of nanocatalysts plays a critical role in the achievement of high densities of active sites but current technologies are hindered by process complexity and limited scaleability. The present work introduces a rapid, flexible, and template-free method to synthesize three-dimensional (3D), mesoporous, CeO2-x nanostructures comprised of extremely thin holey two-dimensional (2D) nanosheets of centimetre-scale. The process leverages the controlled conversion of stacked nanosheets of a newly developed Ce-based coordination polymer into a range of stable oxide morphologies controllably differentiated by the oxidation kinetics. The resultant polycrystalline, hybrid, 2D-3D CeO2-x exhibits high densities of defects and surface area as high as 251 m2 g-1, which yield an outstanding CO conversion performance (T90% = 148 °C) for all oxides. Modification by the creation of heterojunction nanostructures using transition metal oxides (TMOs) results in further improvements in performance (T90% = 88 °C), which are interpreted in terms of the active sites associated with the TMOs that are identified through structural analyses and density functional theory (DFT) simulations. This unparalleled catalytic performance for CO conversion is possible through the ultra-high surface areas, defect densities, and pore volumes. This technology offers the capacity to establish efficient pathways to engineer nanostructures of advanced functionalities for catalysis.

2.
Adv Mater ; 31(8): e1807204, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30614577

ABSTRACT

Conductive metal oxides represent a new category of functional material with vital importance for many modern applications. The present work introduces a new conductive metal oxide V13 O16 , which is synthesized via a simplified photoelectrochemical procedure and decorated onto the semiconducting photocatalyst BiVO4 in controlled mass percentages ranging from 25% to 37%. Owing to its excellent conductivity and good compatibility with oxide materials, the metallic V13 O16 -decorated BiVO4 hybrid catalyst shows a high photocurrent density of 2.2 ± 0.2 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE). Both experimental characterization and density functional theory calculations indicate that the superior photocurrent derives from enhanced charge separation and transfer, resulting from ohmic contact at the interface of mixed phases and superior electrical conductivity from V13 O16 . A Co-Pi coating on BiVO4 -V13 O16 further increases the photocurrent to 5.0 ± 0.5 mA cm-2 at 1.23 V versus RHE, which is among the highest reported for BiVO4 -based photoelectrodes. Surface photovoltage and transient photocurrent measurements suggest a charge-transfer model in which photocurrents are enhanced by improved surface passivation, although the barrier at the Co-Pi/electrolyte interface limits the charge transfer.

3.
Nanotechnology ; 28(26): 265602, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28510531

ABSTRACT

Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

4.
Adv Mater ; 29(11)2017 Mar.
Article in English | MEDLINE | ID: mdl-28112832

ABSTRACT

Highly efficient visible-light catalysts are achieved through forming defect-pairs in TiO2 nanocrystals. This study therefore proposes that fine-tuning the chemical scheme consisting of charge-compensated defect-pairs in balanced concentrations is a key missing step for realizing outstanding photocatalytic performance. This research benefits photocatalytic applications and also provides new insight into the significance of defect chemistry for functionalizing materials.

5.
Adv Mater ; 28(32): 6835-44, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27238289

ABSTRACT

A fibrous herringbone-modified helicoidal architecture is identified within the exocuticle of an impact-resistant crustacean appendage. This previously unreported composite microstructure, which features highly textured apatite mineral templated by an alpha-chitin matrix, provides enhanced stress redistribution and energy absorption over the traditional helicoidal design under compressive loading. Nanoscale toughening mechanisms are also identified using high-load nanoindentation and in situ transmission electron microscopy picoindentation.

6.
J Phys Chem B ; 111(28): 8126-30, 2007 Jul 19.
Article in English | MEDLINE | ID: mdl-17590035

ABSTRACT

The present work reports the tracer diffusion coefficient for (93)Nb in rutile TiO(2) single crystals using secondary ion mass spectrometry (SIMS). The determined tracer diffusion coefficient exhibited the following temperature dependence in air ( p(O2) = 21 kPa) over the range 1073-1573 K: D93(Nb) = (4.7 m2 s(-1))x10(-7+/-0.4) exp ((-244 +/- 9 kJ mol-1)/RT) Through comparison to the self-diffusion of (44)Ti in rutile TiO(2), (93)Nb is interpreted to diffuse via the interstitialcy mechanism. The obtained tracer diffusion data are useful for ensuring compositional control during the processing of Nb-doped TiO(2)-based semiconductors using solid-state reactions between Nb(2)O(5) and TiO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...