Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618951

ABSTRACT

Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.


Subject(s)
Cell-Free Nucleic Acids , Lymphatic Vessels , Genomics , Genotype , Lymphatic System , Lymphatic Vessels/diagnostic imaging
2.
Am J Med Genet A ; 194(1): 64-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705207

ABSTRACT

Turner syndrome (45,X) is caused by a complete or partial absence of a single X chromosome. Vascular malformations occur due to abnormal development of blood and/or lymphatic vessels. They arise from either somatic or germline pathogenic variants in the genes regulating growth and apoptosis of vascular channels. Aortic abnormalities are a common, known vascular anomaly of Turner syndrome. However, previous studies have described other vascular malformations as a rare feature of Turner syndrome and suggested that vascular abnormalities in individuals with Turner syndrome may be more generalized. In this study, we describe two individuals with co-occurrence of Turner syndrome and vascular malformations with a lymphatic component. In these individuals, genetic testing of the lesional tissue revealed a somatic pathogenic variant in PIK3CA-a known and common cause of lymphatic malformations. Based on this finding, we conclude that the vascular malformations presented here and likely those previously in the literature are not a rare part of the clinical spectrum of Turner syndrome, but rather a separate clinical entity that may or may not co-occur in individuals with Turner syndrome.


Subject(s)
Cardiovascular Abnormalities , Lymphatic Abnormalities , Turner Syndrome , Vascular Malformations , Humans , Turner Syndrome/complications , Turner Syndrome/genetics , Mosaicism , Lymphatic Abnormalities/genetics , Vascular Malformations/complications , Vascular Malformations/genetics , Class I Phosphatidylinositol 3-Kinases/genetics
3.
Am J Med Genet A ; 194(3): e63450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37861066

ABSTRACT

Rare diseases (RDs) are defined as diseases that affect a low number of the population. Prenatal diagnoses of RDs can add a lot of unique stress for parents. For example, parents who have prenatal diagnoses experience not only grief of expectation, but are forced to become patient advocates with incomplete information as their child is not yet born, and in many cases parents experience a lot of uncertainty. This typically involves seeking support groups and finding pre- and postnatal specialists all which come with mental and financial cost. Here we discuss the importance of targeted patient resources for parents to help alleviate some of their stress. Patient advocacy organizations can be incredibly useful for parents to navigate the complex healthcare system and help mitigate feelings of isolation, especially when parents can talk to others in a similar situation. We collaborated with a patient organization to create a prenatal parent support guide to address how parental needs such as mental well-being and practicing self-care can be met. We hope that resources such as these can help empower those with a pregnancy affected with a RD diagnosis.


Subject(s)
Fetal Diseases , Rare Diseases , Female , Humans , Pregnancy , Parents , Prenatal Diagnosis , Rare Diseases/diagnosis , Self-Help Groups
4.
Oral Maxillofac Surg Clin North Am ; 36(1): 1-17, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37867039

ABSTRACT

Vascular anomalies include benign or malignant tumors or benign malformations of the arteries, veins, capillaries, or lymphatic vasculature. The genetic etiology of the lesion is essential to define the lesion and can help navigate choice of therapy. . In the United States, about 1.2% of the population has a vascular anomaly, which may be underestimating the true prevalence as genetic testing for these conditions continues to evolve.


Subject(s)
Genetic Testing , Neck , Humans , Arteries
5.
Nat Commun ; 14(1): 4109, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433783

ABSTRACT

Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.


Subject(s)
Neurodevelopmental Disorders , Neurogenesis , Polycomb Repressive Complex 2 , Animals , Chick Embryo , Humans , Cell Differentiation/genetics , Cell Nucleus , Chromatin/genetics , Methyltransferases , Neurodevelopmental Disorders/genetics , Neurogenesis/genetics , Polycomb Repressive Complex 2/genetics
6.
Nat Med ; 29(6): 1530-1539, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37264205

ABSTRACT

Vascular anomalies are malformations or tumors of the blood or lymphatic vasculature and can be life-threatening. Although molecularly targeted therapies can be life-saving, identification of the molecular etiology is often impeded by lack of accessibility to affected tissue samples, mosaicism or insufficient sequencing depth. In a cohort of 356 participants with vascular anomalies, including 104 with primary complex lymphatic anomalies (pCLAs), DNA from CD31+ cells isolated from lymphatic fluid or cell-free DNA from lymphatic fluid or plasma underwent ultra-deep sequencing thereby uncovering pathogenic somatic variants down to a variant allele fraction of 0.15%. A molecular diagnosis, including previously undescribed genetic causes, was obtained in 41% of participants with pCLAs and 72% of participants with other vascular malformations, leading to a new medical therapy for 63% (43/69) of participants and resulting in improvement in 63% (35/55) of participants on therapy. Taken together, these data support the development of liquid biopsy-based diagnostic techniques to identify previously undescribed genotype-phenotype associations and guide medical therapy in individuals with vascular anomalies.


Subject(s)
Lymphatic Abnormalities , Vascular Malformations , Humans , Mutation , Genetic Testing/methods , Vascular Malformations/diagnosis , Vascular Malformations/genetics , Vascular Malformations/therapy , Alleles , Lymphatic Abnormalities/genetics , Genomics
7.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-37154160

ABSTRACT

Central conducting lymphatic anomaly (CCLA) due to congenital maldevelopment of the lymphatics can result in debilitating and life-threatening disease with limited treatment options. We identified 4 individuals with CCLA, lymphedema, and microcystic lymphatic malformation due to pathogenic, mosaic variants in KRAS. To determine the functional impact of these variants and identify a targeted therapy for these individuals, we used primary human dermal lymphatic endothelial cells (HDLECs) and zebrafish larvae to model the lymphatic dysplasia. Expression of the p.Gly12Asp and p.Gly13Asp variants in HDLECs in a 2­dimensional (2D) model and 3D organoid model led to increased ERK phosphorylation, demonstrating these variants activate the RAS/MAPK pathway. Expression of activating KRAS variants in the venous and lymphatic endothelium in zebrafish resulted in lymphatic dysplasia and edema similar to the individuals in the study. Treatment with MEK inhibition significantly reduced the phenotypes in both the organoid and the zebrafish model systems. In conclusion, we present the molecular characterization of the observed lymphatic anomalies due to pathogenic, somatic, activating KRAS variants in humans. Our preclinical studies suggest that MEK inhibition should be studied in future clinical trials for CCLA due to activating KRAS pathogenic variants.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Zebrafish , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Endothelial Cells/metabolism , Phosphorylation , Mitogen-Activated Protein Kinase Kinases/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Pediatr Blood Cancer ; : e30419, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37194624

ABSTRACT

Complex lymphatic anomalies are debilitating conditions characterized by aberrant development of the lymphatic vasculature (lymphangiogenesis). Diagnosis is typically made by history, examination, radiology, and histologic findings. However, there is significant overlap between conditions, making accurate diagnosis difficult. Recently, genetic analysis has been offered as an additional diagnostic modality. Here, we describe four cases of complex lymphatic anomalies, all with PIK3CA variants but with varying clinical phenotypes. Identification of PIK3CA resulted in transition to a targeted inhibitor, alpelisib. These cases highlight the genetic overlap between phenotypically diverse lymphatic anomalies.

10.
J Am Med Inform Assoc ; 30(7): 1274-1283, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37080563

ABSTRACT

OBJECTIVE: We sought to develop and evaluate an electronic health record (EHR) genetic testing tracking system to address the barriers and limitations of existing spreadsheet-based workarounds. MATERIALS AND METHODS: We evaluated the spreadsheet-based system using mixed effects logistic regression to identify factors associated with delayed follow up. These factors informed the design of an EHR-integrated genetic testing tracking system. After deployment, we assessed the system in 2 ways. We analyzed EHR access logs and note data to assess patient outcomes and performed semistructured interviews with users to identify impact of the system on work. RESULTS: We found that patient-reported race was a significant predictor of documented genetic testing follow up, indicating a possible inequity in care. We implemented a CDS system including a patient data capture form and management dashboard to facilitate important care tasks. The system significantly sped review of results and significantly increased documentation of follow-up recommendations. Interviews with key system users identified a range of sociotechnical factors (ie, tools, tasks, collaboration) that contribute to safer and more efficient care. DISCUSSION: Our new tracking system ended decades of workarounds for identifying and communicating test results and improved clinical workflows. Interview participants related that the system decreased cognitive and time burden which allowed them to focus on direct patient interaction. CONCLUSION: By assembling a multidisciplinary team, we designed a novel patient tracking system that improves genetic testing follow up. Similar approaches may be effective in other clinical settings.


Subject(s)
Decision Support Systems, Clinical , Electronic Health Records , Humans , Follow-Up Studies , Software , Genetic Testing
11.
Sci Adv ; 9(10): eade1463, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36897941

ABSTRACT

Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.


Subject(s)
Megalencephaly , Neurodevelopmental Disorders , Animals , Humans , Mice , Haploinsufficiency , Methyltransferases/genetics , Mice, Knockout , Neurodevelopmental Disorders/genetics , Phenotype
12.
Am J Med Genet A ; 191(5): 1442-1446, 2023 05.
Article in English | MEDLINE | ID: mdl-36695285

ABSTRACT

Capillary malformations are slow-flow vascular malformations that affect the microcirculation including capillaries and post capillary venules and can be associated with growth differences. Specifically, the association of capillary malformations with undergrowth is a vastly understudied vascular syndrome with few reports of genetic causes including PIK3CA, GNAQ, and GNA11. Recently, a somatic pathogenic variant in AKT3 was identified in one child with a cutaneous vascular syndrome similar to cutis marmorata telangiectatica congenita, undergrowth, and no neurodevelopmental features. Here, we present a male patient with a capillary malformation and undergrowth due to a somatic pathogenic variant in AKT3 to confirm this association. It is essential to consider that mosaic pathogenic variants in AKT3 can cause a wide spectrum of disease. There is a need for future studies focusing on capillary malformations with undergrowth to understand the underlying mechanism.


Subject(s)
Livedo Reticularis , Telangiectasis , Vascular Malformations , Child , Humans , Male , Capillaries/abnormalities , Vascular Malformations/diagnosis , Vascular Malformations/genetics , Telangiectasis/genetics , Syndrome , Mutation , Proto-Oncogene Proteins c-akt/genetics
13.
HGG Adv ; 4(1): 100157, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36408368

ABSTRACT

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Drosophila Proteins , Language Development Disorders , Neurodevelopmental Disorders , Animals , Humans , Autism Spectrum Disorder/genetics , Drosophila melanogaster/genetics , Neurodevelopmental Disorders/genetics , Cluster Analysis , Chromatin , Intracellular Signaling Peptides and Proteins/genetics , Histone-Lysine N-Methyltransferase/genetics , Drosophila Proteins/genetics
14.
Genet Med ; 24(11): 2351-2366, 2022 11.
Article in English | MEDLINE | ID: mdl-36083290

ABSTRACT

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Phenotype , Neurodevelopmental Disorders/genetics , Wnt Signaling Pathway/genetics , Intellectual Disability/genetics , Genomics , beta Catenin/genetics
15.
Pediatrics ; 150(1)2022 07 01.
Article in English | MEDLINE | ID: mdl-35642503

ABSTRACT

BACKGROUND AND OBJECTIVES: Telemedicine may increase access to medical genetics care. However, in the pediatric setting, how telemedicine may affect the diagnostic rate is unknown, partially because of the perceived importance of the dysmorphology physical examination. We studied the clinical effectiveness of telemedicine for patients with suspected or confirmed genetic conditions. METHODS: We conducted a retrospective cohort study of outpatient encounters before and after the widespread implementation of telemedicine (N = 5854). Visit types, diagnoses, patient demographic characteristics, and laboratory data were acquired from the electronic health record. Patient satisfaction was assessed through survey responses. New molecular diagnosis was the primary end point. RESULTS: Patients seen by telemedicine were more likely to report non-Hispanic White ancestry, prefer to speak English, live in zip codes with higher median incomes, and have commercial insurance (all P < .01). Genetic testing was recommended for more patients evaluated by telemedicine than in person (79.5% vs 70.9%; P < .001). Patients seen in person were more likely to have a sample collected, resulting in similar test completion rates (telemedicine, 51.2%; in person, 55.1%; P = .09). There was no significant difference in molecular diagnosis rate between visit modalities (telemedicine, 13.8%; in person, 12.4%; P = .40). CONCLUSIONS: Telemedicine and traditional in-person evaluation resulted in similar molecular diagnosis rates. However, improved methodologies for remote sample collection may be required. This study reveals the feasibility of telemedicine in a large academic medical genetics practice and is applicable to other pediatric specialties with perceived importance of physical examination.


Subject(s)
Telemedicine , Child , Humans , Patient Satisfaction , Retrospective Studies , Surveys and Questionnaires , Telemedicine/methods , Treatment Outcome
17.
Eur J Hum Genet ; 30(9): 1022-1028, 2022 09.
Article in English | MEDLINE | ID: mdl-35606495

ABSTRACT

Central conducting lymphatic anomaly (CCLA) is a heterogenous disorder caused by disruption of central lymphatic flow that may result in dilation or leakage of central lymphatic channels. There is also a paucity of known genetic diagnoses associated with CCLA. We hypothesized that specific genetic syndromes would have distinct lymphatic patterns and this would allow us to more precisely define CCLA. As a first step toward "precision lymphology", we defined the genetic conditions associated with CCLA by performing a retrospective cohort study. Individuals receiving care through the Jill and Mark Fishman Center for Lymphatic Disorders at the Children's Hospital of Philadelphia between 2016 and 2019 were included if they had a lymphangiogram and clinical genetic testing performed and consented to a clinical registry. In our cohort of 115 participants, 26% received a molecular diagnosis from standard genetic evaluation. The most common genetic etiologies were germline and mosaic RASopathies, chromosomal abnormalities including Trisomy 21 and 22q11.2 deletion syndrome, and PIEZO1-related lymphatic dysplasia. Next, we analyzed the dynamic contrast magnetic resonance lymphangiograms and found that individuals with germline and mosaic RASopathies, mosaic KRASopathies, PIEZO1-related lymphatic dysplasia, and Trisomy 21 had distinct central lymphatic flow phenotypes. Our research expands the genetic conditions associated with CCLA and genotype-lymphatic phenotype correlations. Future descriptions of CCLA should include both genotype (if known) and phenotype to provide more information about disease (gene-CCLA). This should be considered for updated classifications of CCLA by the International Society of Vascular Anomalies.


Subject(s)
Down Syndrome , Lymphatic Abnormalities , Cohort Studies , Genetic Association Studies , Humans , Ion Channels/genetics , Lymphatic Abnormalities/genetics , Phenotype , Retrospective Studies
18.
Sci Transl Med ; 14(634): eabm4869, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35235341

ABSTRACT

Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise. Although pathogenic variants in RAS/mitogen activated protein kinase (MAPK) signaling pathway components have been documented in some patients with CCLA, the genetic etiology of the disorder remains uncharacterized in most cases. Here, we identified biallelic pathogenic variants in MDFIC, encoding the MyoD family inhibitor domain containing protein, in seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax. The lymphatic vasculature of homozygous Mdfic mutant mice was profoundly mispatterned and exhibited major defects in lymphatic vessel valve development. Mechanistically, we determined that MDFIC controls collective cell migration, an important early event during the formation of lymphatic vessel valves, by regulating integrin ß1 activation and the interaction between lymphatic endothelial cells and their surrounding extracellular matrix. Our work identifies MDFIC variants underlying human lymphatic disease and reveals a crucial, previously unrecognized role for MDFIC in the lymphatic vasculature. Ultimately, understanding the genetic and mechanistic basis of CCLA will facilitate the development and implementation of new therapeutic approaches to effectively treat this complex disease.


Subject(s)
Chylothorax , Lymphatic Vessels , Lymphedema , Myogenic Regulatory Factors , Animals , Chylothorax/genetics , Chylothorax/metabolism , Endothelial Cells , Female , Humans , Hydrops Fetalis/genetics , Hydrops Fetalis/metabolism , Lymphatic Vessels/pathology , Lymphedema/genetics , Lymphedema/metabolism , Mice , Myogenic Regulatory Factors/genetics , Pregnancy
20.
Genet Med ; 24(3): 631-644, 2022 03.
Article in English | MEDLINE | ID: mdl-34906488

ABSTRACT

PURPOSE: We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families, involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnormalities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better define the phenotype and pathologic disease mechanism. METHODS: Clinical and genomic investigations were undertaken alongside molecular studies, including immunoblotting and immunofluorescence analyses of variant/wild-type human HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants. RESULTS: Ten newly identified individuals with this condition were investigated, and they were associated with 9 novel pathogenic variants. Clinical studies defined genotype-phenotype correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the condition. In silico modeling of missense variants identified likely deleterious effects on protein folding. Consistent with this, functional studies indicated that these variants cause protein instability and a concomitant cell surface absence of HYAL2 protein. CONCLUSION: These studies confirm an association between HYAL2 alterations and syndromic cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable further insights into the pathomolecular basis of the disease, and delineate the core and variable clinical outcomes of the condition.


Subject(s)
Cleft Lip , Cleft Palate , Alleles , Animals , Cell Adhesion Molecules/genetics , Cleft Lip/genetics , Cleft Palate/genetics , GPI-Linked Proteins/genetics , Genetic Association Studies , Humans , Hyaluronoglucosaminidase/genetics , Mice , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...