Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 377(6604): 366-367, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35862537

ABSTRACT

Searches during twilight toward the Sun have found several asteroids near Venus' orbit.

2.
Nature ; 507(7493): 471-4, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670765

ABSTRACT

The observable Solar System can be divided into three distinct regions: the rocky terrestrial planets including the asteroids at 0.39 to 4.2 astronomical units (AU) from the Sun (where 1 AU is the mean distance between Earth and the Sun), the gas giant planets at 5 to 30 AU from the Sun, and the icy Kuiper belt objects at 30 to 50 AU from the Sun. The 1,000-kilometre-diameter dwarf planet Sedna was discovered ten years ago and was unique in that its closest approach to the Sun (perihelion) is 76 AU, far greater than that of any other Solar System body. Formation models indicate that Sedna could be a link between the Kuiper belt objects and the hypothesized outer Oort cloud at around 10,000 AU from the Sun. Here we report the presence of a second Sedna-like object, 2012 VP113, whose perihelion is 80 AU. The detection of 2012 VP113 confirms that Sedna is not an isolated object; instead, both bodies may be members of the inner Oort cloud, whose objects could outnumber all other dynamically stable populations in the Solar System.

3.
Science ; 329(5997): 1304, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20705814

ABSTRACT

The orbits of small Solar System bodies record the history of our Solar System. Here, we report the detection of 2008 LC18, which is a Neptune Trojan in the trailing (L5) Lagrangian region of gravitational equilibrium within Neptune's orbit. We estimate that the leading and trailing Neptune Trojan regions have similarly sized populations and dynamics, with both regions dominated by high-inclination objects. Similar populations and dynamics at both Neptune Lagrangian regions indicate that the Trojans were likely captured by a migrating, eccentric Neptune in a dynamically excited planetesimal population.

4.
Sci Am ; 295(2): 40-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16866287
5.
Science ; 313(5786): 511-4, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-16778021

ABSTRACT

The dynamical and physical properties of asteroids offer one of the few constraints on the formation, evolution, and migration of the giant planets. Trojan asteroids share a planet's semimajor axis but lead or follow it by about 60 degrees near the two triangular Lagrangian points of gravitational equilibrium. Here we report the discovery of a high-inclination Neptune Trojan, 2005 TN(53). This discovery demonstrates that the Neptune Trojan population occupies a thick disk, which is indicative of "freeze-in" capture instead of in situ or collisional formation. The Neptune Trojans appear to have a population that is several times larger than the Jupiter Trojans. Our color measurements show that Neptune Trojans have statistically indistinguishable slightly red colors, which suggests that they had a common formation and evolutionary history and are distinct from the classical Kuiper Belt objects.


Subject(s)
Evolution, Planetary , Minor Planets , Neptune
6.
Nature ; 439(7076): 541-2, 2006 Feb 02.
Article in English | MEDLINE | ID: mdl-16452963
7.
Nature ; 423(6937): 261-3, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12748634

ABSTRACT

Irregular satellites have eccentric orbits that can be highly inclined or even retrograde relative to the equatorial planes of their planets. These objects cannot have formed by circumplanetary accretion, unlike the regular satellites that follow uninclined, nearly circular and prograde orbits. Rather, they are probably products of early capture from heliocentric orbits. Although the capture mechanism remains uncertain, the study of irregular satellites provides a window on processes operating in the young Solar System. Families of irregular satellites recently have been discovered around Saturn (thirteen members, refs 6, 7), Uranus (six, ref. 8) and Neptune (three, ref. 9). Because Jupiter is closer than the other giant planets, searches for smaller and fainter irregular satellites can be made. Here we report the discovery of 23 new irregular satellites of Jupiter, so increasing the total known population to 32. There are five distinct satellite groups, each dominated by one relatively large body. The groups were most probably produced by collisional shattering of precursor objects after capture by Jupiter.

SELECTION OF CITATIONS
SEARCH DETAIL