Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 78(2): 275-83, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15219768

ABSTRACT

The central histamine 3 receptor (H3R) is a presynaptic autoreceptor that regulates neuronal release and synthesis of histamine, and is thought to play a key role in controlling numerous central nervous system (CNS)-mediated parameters, including energy homeostasis. Thioperamide, the prototypical selective H3R antagonist, was used to examine the role that H3R plays in regulating energy balance in vivo. Thioperamide was administered either intraperitoneally or orally to rats and the pharmacokinetic parameters were examined along with central H3R binding and histaminergic system activation. Food intake and metabolic parameters of either route of thioperamide administration were likewise examined. In a dose-dependent manner, both the intraperitoneal and oral route of administration resulted in similar ex vivo binding curves and tele-methylhistamine dose-response curves despite the route of administration. However, only intraperitoneal administration of 30 mg/kg thioperamide resulted in a significant decrease in 24-h food intake (60% lower than control) and respiratory quotient (RQ), while the oral route of delivery did not. Moreover, the decrease in RQ with the 30 mg/kg ip administration also decreased energy expenditure (EE) thus resulting in an unchanged energy balance. The decrease in food intake and EE was coupled with a conditioned taste aversion with the 30-mg/kg ip administration. These data indicate that the activation of the central H3R system by thioperamide does not play a direct role in decreasing food intake or altering energy homeostasis.


Subject(s)
Eating/drug effects , Energy Metabolism/drug effects , Piperidines/pharmacology , Receptors, Histamine H3/metabolism , Animals , Darkness , Dose-Response Relationship, Drug , Eating/physiology , Energy Metabolism/physiology , Male , Photoperiod , Piperidines/metabolism , Protein Binding/physiology , Rats , Rats, Long-Evans , Receptors, Histamine H3/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...