Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 12(29): 6946-6954, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34283594

ABSTRACT

In micro-light-emitting diode (micro-LED) displays with color-conversion layers, a facile and efficient technology getting rid of the use of the color filters leads to a big technical leap in cost-effective fabrication. In this study, it is demonstrated that quantum dot (QD) color conversion layers can significantly suppress residual blue excitation light because of the high extinction coefficients of QDs, ∼0.1% transmittance of blue light for green and red core/shell CdSe/ZnS QD film with thickness of less than 17 µm, and produce green and red colors. Incorporation of TiO2 nanoparticles into QD solutions enhances more than 10% of the luminous intensity by the scattering effect. It is found that the suppression of QD reabsorption is essential to achieve a high color-conversion efficiency. Our results provide a clear path to a cost-effective fabrication of QD conversion layer micro-LED displays over the full range of their applications.

2.
Light Sci Appl ; 9: 83, 2020.
Article in English | MEDLINE | ID: mdl-32411368

ABSTRACT

Micro-light-emitting diodes (µ-LEDs) are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications, such as mobile phones, wearable watches, virtual/augmented reality, micro-projectors and ultrahigh-definition TVs. However, as the LED chip size shrinks to below 20 µm, conventional phosphor colour conversion cannot present sufficient luminance and yield to support high-resolution displays due to the low absorption cross-section. The emergence of quantum dot (QD) materials is expected to fill this gap due to their remarkable photoluminescence, narrow bandwidth emission, colour tuneability, high quantum yield and nanoscale size, providing a powerful full-colour solution for µ-LED displays. Here, we comprehensively review the latest progress concerning the implementation of µ-LEDs and QDs in display technology, including µ-LED design and fabrication, large-scale µ-LED transfer and QD full-colour strategy. Outlooks on QD stability, patterning and deposition and challenges of µ-LED displays are also provided. Finally, we discuss the advanced applications of QD-based µ-LED displays, showing the bright future of this technology.

3.
Adv Sci (Weinh) ; 6(24): 1902230, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871872

ABSTRACT

Perovskite quantum dots (PQDs) are a competitive candidate for next-generation display technologies as a result of their superior photoluminescence, narrow emission, high quantum yield, and color tunability. However, due to poor thermal resistance and instability under high energy radiation, most PQD-based white light-emitting diodes (LEDs) show only modest luminous efficiency of ≈50 lm W-1 and a short lifetime of <100 h. In this study, by incorporating cellulose nanocrystals, a new type of QD film is fabricated: CH3NH3PbBr3 PQD paper that features 91% optical absorption, intense green light emission (518 nm), and excellent stability attributed to the complexation effect between the nanocellulose and PQDs. The PQD paper is combined with red K2SiF6:Mn4+ phosphor and blue GaN LED chips to fabricate a high-performance white LED demonstrating ultrahigh luminous efficiency (124 lm W-1), wide color gamut (123% of National Television System Committee), and long operation lifetime (240 h), which paves the way for advanced lighting technology.

4.
Nanomaterials (Basel) ; 9(9)2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31540013

ABSTRACT

We demonstrate excellent color quality of liquid-type white light-emitting diodes (WLEDs) using a combination of green light-emitting CsPbBr3 and red light-emitting CdSe/ZnS quantum dots (QDs). Previously, we reported red (CsPbBr1.2I1.8) and green (CsPbBr3) perovskite QDs (PQDs)-based WLEDs with high color gamut, which manifested fast anion exchange and stability issues. Herein, the replacement of red PQDs with CdSe/ZnS QDs has resolved the aforementioned problems effectively and improved both stability and efficiency. Further, the proposed liquid-type device possesses outstanding color gamut performance (132% of National Television System Committee and 99% of Rec. 2020). It also shows a high efficiency of 66 lm/W and an excellent long-term operation stability for over 1000 h.

5.
Nanoscale Res Lett ; 13(1): 411, 2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30578467

ABSTRACT

High-brightness white-light-emitting diodes (w-LEDs) with excellent color quality is demonstrated by using nontoxic nanomaterials. Previously, we have reported the high color quality w-LEDs with heavy-metal phosphor and quantum dots (QDs), which may cause environmental hazards. In the present work, liquid-type white LEDs composed of nontoxic materials, named as graphene and porous silicon quantum dots are fabricated with a high color rendering index (CRI) value gain up to 95. The liquid-typed device structure possesses minimized surface temperature and 25% higher value of luminous efficiency as compare to dispensing-typed structure. Further, the as-prepared device is environment friendly and attributed to low toxicity. The low toxicity and high R9 (87) component values were conjectured to produce new or improve current methods toward bioimaging application.

6.
Nanoscale ; 10(13): 6214, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29595205

ABSTRACT

Correction for 'A high quality liquid-type quantum dot white light-emitting diode' by Chin-Wei Sher et al., Nanoscale, 2016, 8, 1117-1122.

7.
ACS Appl Mater Interfaces ; 9(40): 35279-35286, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28891282

ABSTRACT

This study developed flexible light-emitting diodes (LEDs) with warm white and neutral white light. A simple ultraviolet flip-chip sticking process was adopted for the pumping source and combined with polymer and quantum dot (QD) films technology to yield white light. The polymer-blended flexible LEDs exhibited higher luminous efficiency than the QD-blended flexible LEDs. Moreover, the polymer-blended LEDs achieved excellent color-rendering index (CRI) values (Ra = 96 and R9 = 96), with high reliability, demonstrating high suitability for special applications like accent, down, or retrofit lights in the future. In places such as a museum, kitchen, or surgery room, its high R9 and high CRI characteristics can provide high-quality services.

8.
Nanoscale ; 8(2): 1117-22, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26666455

ABSTRACT

This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop(-1) and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time.

9.
Opt Express ; 23(19): A1167-78, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26406747

ABSTRACT

This study demonstrates the flexible white LED structure with high lumen efficiency and uniform optical performance for neutral white and warm white CCT. Flip-chip LEDs were attached on a polyimide substrate with copper strips as electrical and thermal conduction paths. Yellow phosphors are mixed with polydimenthysiloxane (PDMS) to provide mechanical support and flexibility. The light efficiency of this device can reach 120 lm/W and 85% of light output uniformity of the emission area can be achieved. Moreover, the optical simulation is employed to evaluate various designs of this flexible film in order to obtain uniform output. Both the pitch between the individual devices and the thickness of the phosphor film are calculated for optimization purpose. This flexible white LED with high lumen efficiency and good reliability is suitable for the large area fixture in the general lighting applications.

10.
Opt Express ; 19 Suppl 4: A930-6, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21747563

ABSTRACT

High efficiency white light-emitting diodes with superior color-mixing have been investigated. It is suggested that the patterned remote phosphor structure could improve the uniformity of angular-dependent correlated color temperature (CCT) and achieve high chromatic stability in wider operating current range, as compared to the conventional remote phosphor coating structure. In this experiment, we employed a pulse spray coating method to place the patterned phosphor on the package and to leave a window region. The window area, a clear space without coating of the phosphor not only increases the extraction efficiency of blue rays at large angle, but also improves the stability of angular-dependent CCT. Moreover, the CCT deviation could be reduced from 1320 K to 266 K by this patterned remote phosphor method, and the stray blue/yellow light within the package can be effectively reduced and controlled. The design was verified both experimentally and theoretically.

SELECTION OF CITATIONS
SEARCH DETAIL
...