Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Front Physiol ; 14: 1214887, 2023.
Article in English | MEDLINE | ID: mdl-37560159

ABSTRACT

Background: Asthma rehabilitation at high altitude is common. Little is known about the acute and subacute cardiopulmonary acclimatization to high altitude in middle-aged asthmatics without other comorbidities. Methods: In this prospective study in lowlander subjects with mostly mild asthma who revealed an asthma control questionnaire score >0.75 and participated in a three-week rehabilitation program, we assessed systolic pulmonary artery pressure (sPAP), cardiac function, and extravascular lung water (EVLW) at 760 m (baseline) by Doppler-echocardiography and on the second (acute) and last day (subacute) at a high altitude clinic in Kyrgyzstan (3100 m). Results: The study included 22 patients (eight male) with a mean age of 44.3 ± 12.4 years, body mass index of 25.8 ± 4.7 kg/m2, a forced expiratory volume in 1 s of 92% ± 19% predicted (post-bronchodilator), and partially uncontrolled asthma. sPAP increased from 21.8 mmHg by mean difference by 7.5 [95% confidence interval 3.9 to 10.5] mmHg (p < 0.001) during acute exposure and by 4.8 [1.0 to 8.6] mmHg (p = 0.014) during subacute exposure. The right-ventricular-to-pulmonary-artery coupling expressed by TAPSE/sPAP decreased from 1.1 by -0.2 [-0.3 to -0.1] mm/mmHg (p < 0.001) during acute exposure and by -0.2 [-0.3 to -0.1] mm/mmHg (p = 0.002) during subacute exposure, accordingly. EVLW significantly increased from baseline (1.3 ± 1.8) to acute hypoxia (5.5 ± 3.5, p < 0.001) but showed no difference after 3 weeks (2.0 ± 1.8). Conclusion: In otherwise healthy asthmatics, acute exposure to hypoxia at high altitude increases pulmonary artery pressure (PAP) and EVLW. During subacute exposure, PAP remains increased, but EVLW returns to baseline values, suggesting compensatory mechanisms that contribute to EVLW homeostasis during acclimatization.

3.
Front Physiol ; 13: 980755, 2022.
Article in English | MEDLINE | ID: mdl-36160864

ABSTRACT

Introduction: We evaluated whether exposure to high altitude impairs visuomotor learning in lowlanders with chronic obstructive pulmonary disease (COPD) and whether this can be prevented by acetazolamide treatment. Methods: 45 patients with COPD, living <800 m, FEV1 ≥40 to <80%predicted, were randomized to acetazolamide (375 mg/d) or placebo, administered 24h before and during a 2-day stay in a clinic at 3100 m. Visuomotor performance was evaluated with a validated, computer-assisted test (Motor-Task-Manager) at 760 m above sea level (baseline, before starting the study drug), within 4h after arrival at 3100 m and in the morning after one night at 3100 m. Main outcome was the directional error (DE) of cursor movements controlled by the participant via mouse on a computer screen during a target tracking task. Effects of high altitude and acetazolamide on DE during an adaptation phase, immediate recall and post-sleep recall were evaluated by regression analyses. www.ClinicalTrials.gov NCT03165890. Results: In 22 patients receiving placebo, DE at 3100 m increased during adaptation by mean 2.5°, 95%CI 2.2° to 2.7° (p < 0.001), during immediate recall by 5.3°, 4.6° to 6.1° (p < 0.001), and post-sleep recall by 5.8°, 5.0 to 6.7° (p < 0.001), vs. corresponding values at 760 m. In 23 participants receiving acetazolamide, corresponding DE were reduced by -0.3° (-0.6° to 0.1°, p = 0.120), -2.7° (-3.7° to -1.6°, p < 0.001) and -3.1° (-4.3° to -2.0°, p < 0.001), compared to placebo at 3100 m. Conclusion: Lowlanders with COPD travelling to 3100 m experienced altitude-induced impairments in immediate and post-sleep recall of a visuomotor task. Preventive acetazolamide treatment mitigated these undesirable effects.

4.
Pulmonology ; 27(5): 394-402, 2021.
Article in English | MEDLINE | ID: mdl-33674243

ABSTRACT

BACKGROUND: High altitude pulmonary hypertension (HAPH), a chronic altitude related illness, is associated with hypoxemia, dyspnea and reduced exercise performance. We evaluated ECG and pulse wave-derived markers of cardiovascular risk in highlanders with HAPH (HAPH+) in comparison to healthy highlanders (HH) and lowlanders (LL) and the effects of hyperoxia. METHODS: We studied 34 HAPH+ and 54 HH at Aksay (3250m), and 34 LL at Bishkek (760m), Kyrgyzstan. Mean pulmonary artery pressure by echocardiography was mean±SD 34±3, 22±5, 16±4mmHg, respectively (p<0.05 all comparisons). During quiet rest, breathing room air or oxygen in randomized order, we measured heart-rate adjusted QT interval (QTc), an ECG-derived marker of increased cardiovascular mortality, and arterial stiffness index (SI), a marker of cardiovascular disease derived from pulse oximetry plethysmograms. RESULTS: Pulse oximetry in HAPH+, HH and LL was, mean±SD, 88±4, 92±2 and 95±2%, respectively (p<0.05 vs HAPH+, both comparisons). QTc in HAPH+, HH and LL was 422±24, 405±27, 400±28ms (p<0.05 HAPH+ vs. others); corresponding SI was 10.5±1.9, 8.4±2.6, 8.5±2.0m/s, heart rate was 75±8, 68±8, 70±10 bpm (p<0.05, corresponding comparisons HAPH+ vs. others). In regression analysis, HAPH+ was an independent predictor of increased QTc and SI when controlled for several confounders. Oxygen breathing increased SI in HH but not in HAPH+, and reduced QTc in all groups. CONCLUSIONS: Our data suggest that HAPH+ but not HH may be at increased risk of cardiovascular mortality and morbidity compared to LL. The lack of a further increase of the elevated SI during hyperoxia in HAPH+ may indicate dysfunctional control of vascular tone and/or remodelling.


Subject(s)
Altitude Sickness/therapy , Hyperoxia , Hypertension, Pulmonary/therapy , Oxygen/therapeutic use , Adult , Aged , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Death, Sudden, Cardiac , Echocardiography , Female , Heart Disease Risk Factors , Heart Rate/physiology , Humans , Hypoxia , Male , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...