Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 119: 154981, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531902

ABSTRACT

PURPOSE: The declined oxygen tension in the cancer cell leads to the hypoxic adaptive response and favors establishment of tumor micro environment [TEM]. The complex TME consists of interwoven hypoxic HIF-1α and DNA damage repair ATM signaling. The ATM/HIF-1α phosphorylation switch on angiogenesis and abort apoptosis. Targeting this signaling nexus would be a novel therapeutic strategy for the treatment of cancer. BACKGROUND: Steroidal alkaloid solanidine is known for varied pharmacological role but with less molecular evidences. Our earlier findings on solanidine proven its anti-neoplastic activity by inducing apoptosis in lung cancer. In continued research, efforts have been made to establish the underlying molecular signaling in induction of DNA damage in prevailing hypoxic TME. METHODS: The solanidine induced DNA damage was assessed trough alkali COMET assay; signaling nexus and gene expression profile analysis through IB, qRT-PCR, Gelatin Zymography, IHC, IF and ELISA. Pathophysiological modulations assessed through tube formation, migration, invasion assays. Anti-angiogenic studies through CAM, rat aorta, matrigel assays and corneal neovascularization assay. Anti-tumor activity through in-vivo DLA ascites tumor model and LLC model. RESULTS: The results postulates, inhibition of hypoxia driven DDR proteins pATMser1981/pHIF-1αser696 by solanidine induces anti-angiogenesis. Systematic study of both non-tumorigenic and tumorigenic models in-vitro as well as in-vivo experimental system revealed the angio-regression mediated anticancer effect in lung cancer. These effects are due to the impeded expression of angiogenic mediators such as VEGF, MMP2&9 and inflammatory cytokines IL6 and TNFα to induce pathophysiological changes CONCLUSION: The study establishes new role of solanidine by targeting ATM/HIF-1α signaling to induce anti-angiogenesis for the first time. The study highlights the potentiality of plant based phytomedicine solanidine which can targets the multiple hallmarks of cancer by targeting interwoven signaling crosstalk. Such an approach through solanidine necessary to counteract heterogeneous complexity of cancer which could be nearly translated into drug.


Subject(s)
Adenocarcinoma of Lung , Alkaloids , Antineoplastic Agents , Lung Neoplasms , Rats , Animals , Phosphorylation , Antineoplastic Agents/therapeutic use , Hypoxia/drug therapy , Alkaloids/pharmacology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit , Neovascularization, Pathologic/drug therapy , Cell Line, Tumor , Tumor Microenvironment
2.
Chem Biodivers ; 20(5): e202201152, 2023 May.
Article in English | MEDLINE | ID: mdl-36974341

ABSTRACT

The design, molecular docking, synthesis and structure-activity relationship (SAR) of a series of novel methyl 1-oxo-2-(propan-2-yl)-3-(pyridin-3-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylates, were investigated for antiproliferative and cytotoxic studies by screening against cancer cell lines of different origin by MTT, LDH and Trypan Blue Assay. Irrespective of cell lines, among the synthesized nonpeptido-mimetic analogs 5a-e, 5c has executed potent bio-potency with IC50 value of 7.00 to 7.21 µM, which further expressed in-vivo anti-tumor activity against murine T-cell lymphoma cell lines (Daltons Lymphoma-DLA) by regressing tumor growth. The formation of neovessels from the vasculogenesis was diminished reflecting the antitumor activity. The neovessel formation is directly relied on expression of matrix meteloproteases (MMP's) level which was drastically reduced by 5c treatment as evaluated by immonoblot assays. This is further supported by in-silico ADMET studies performed by ACD I-Lab 2.0 were in agreement with Lipinski rule of five. Reporting results were assessed as a positive parameter for further validation of the compound for therapeutic potential of cancer by 5c for preclinical studies in near future.


Subject(s)
Antineoplastic Agents , Tetrahydroisoquinolines , Animals , Mice , Molecular Structure , Molecular Docking Simulation , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Tetrahydroisoquinolines/pharmacology , Metalloproteases/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology
3.
3 Biotech ; 12(11): 306, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276461

ABSTRACT

Curcumin (diferuloylmethane) is bioactive phenolic compound which exerts diverse antimetastatic effect. Several studies have reported the antimetastatic effect of curcumin by its ability to modulate the epithelial-to-mesenchymal transition (EMT) process in different cancers, but underlying molecular mechanism is poorly understood. EMT is a highly conserved biological process in which epithelial cells acquire mesenchymal-like characteristics by losing their cell-cell junctions and polarity. As a consequence, deviation in cellular mechanism leads to cancer metastasis and thereby death. In this perspective, we explored the antimetastatic potential and mechanism of curcumin on the EMT process by establishing in vitro EMT model in lungs cancer (A549) cells induced by TGF-ß1. Our results showed that curcumin mitigates EMT by regulating the expression of crucial mesenchymal markers such as MMP2, vimentin and N-cadherin. Besides, the transcriptional analysis revealed that the curcumin treatment differentially regulated the expression of 75 genes in NanoString nCounter platform. Further protein-protein interaction network and clusters analysis of differentially expressed genes revealed their involvement in essential biological processes that plays a key role during EMT transition. Altogether, the study provides a comprehensive overview of the antimetastatic potential of curcumin in TGF-ß1-induced EMT in lung cancer cells. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03360-7.

4.
Pharmacol Rep ; 74(2): 353-365, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35001321

ABSTRACT

BACKGROUND: Anomalous activation of intra-cellular signalling cascades confers neoplastic properties on malignant cells. The JAK2/STAT3 proteins play a pivotal role in the pathogenesis of most of the solid malignancies. The over expression of STAT3 in these tumours results in an evasion of apoptosis and thereby pathogenesis. Hence, strategy to target STAT3 to regress tumour development is an emerging new concept. As an approach, anti-neoplastic drug, Azo-hydrozone analogue, BT-1F with potential anti-proliferative effect was evaluated to demonstrate its capacity to counteract STAT3 signal with mechanistic approach. METHODS: Cell based screening for cytotoxicity was performed through MTT, LDH and Trypan blue. The BT-1F induced anti-clonogenic property by clonogenic assay. The apoptotic capacity was examined by crystal violet staining, flow cytometry, Annexin-FITC, DAPI and TUNEL assay. The altered signalling events were studied using immunoblot. The drug-induced anti-tumour effect was evaluated in an in-vivo solid tumour model and molecular interaction was further validated by in-silico studies. RESULTS: The BT-1F exerts chemo-sensitivity specifically against EAC and A549 cells without altering its normal counterpart. The anti-proliferative/anti-clonogenic effect was due to the induction of apoptosis through inhibition of STAT3Tyr705 signal. Eventually downstream signalling proteins p53, Bax, Bad and Bcl-xL were significantly altered. Further in-vivo experimental results validated  in-vitro findings. The computational approaches assures the BT-1F efficiency in binding with STAT3. CONCLUSION: Systemic validation of STAT3 target drug, BT-1F in in-vitro, in-silico and in-vivo models has promising strategy for solid cancer treatment.


Subject(s)
Hydrazones , STAT3 Transcription Factor , Apoptosis , Cell Line, Tumor , Cell Proliferation , Hydrazones/pharmacology , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
5.
Apoptosis ; 27(1-2): 49-69, 2022 02.
Article in English | MEDLINE | ID: mdl-34837562

ABSTRACT

Reigning of the abnormal gene activation associated with survival signalling in lung cancer leads to the anomalous growth and therapeutic failure. Targeting specific cell survival signalling like JAK2/STAT3 nexus has become a major focus of investigation to establish a target specific treatment. The 2-bromobenzoyl-4-methylphenoxy-acetyl hydra acetyl Coumarin (BP-1C), is new anti-neoplastic agent with apoptosis inducing capacity. The current study was aimed to develop antitumor phramacophore, BP-1C as JAK2 specific inhibitor against lung neoplastic progression. The study validates and identifies the molecular targets of BP-1C induced cell death. Cell based screening against multiple cancer cell lines identified, lung adenocarcinoma as its specific target through promotion of apoptosis. The BP-1C is able to induce, specific hall marks of apoptosis and there by conferring anti-neoplastic activity. Validation of its molecular mechanism, identified, BP-1C specifically targets JAK2Tyr1007/1008 phosphorylation, and inhibits its downstream STAT3Tyr705 signalling pathway to induce cell death. As a consequence, modulation in Akt/Src survival signal and altered expression of interwoven apoptotic genes were evident. The results were reproducible in an in-vivo LLC tumor model and in-ovo xenograft studies. The computational approaches viz, drug finger printing confers, BP-1C as novel class JAK2 inhibitor and molecular simulations studies assures its efficiency in binding with JAK2. Overall, BP-1C is a novel JAK2 inhibitor with experimental evidence and could be effectively developed into a promising drug for lung cancer treatment.


Subject(s)
Apoptosis , Lung Neoplasms , Benzophenones/pharmacology , Cell Line, Tumor , Cell Proliferation , Coumarins/pharmacology , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , STAT3 Transcription Factor/metabolism
6.
Pharmacol Rep ; 73(5): 1344-1360, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34109572

ABSTRACT

BACKGROUND: Imbalance and instability in the structure of the DNA have become major characteristics of cancer. In response to DNA damage, DNA damage response (DDR) protein, ataxia telangiectasia mutated (ATM), plays a pivotal role in the modulation of regulatory regions responsible for inhibition of apoptosis, thereby neoplastic progression. METHODS: A new series of DPA (7a-t) were synthesized, characterized. Anti-proliferative studies to identify the lead compound were carried out by LDH and MTT assay. Apoptosis/DNA damage was measured through FACS, Annexin-v staining, TUNEL and Comet assay. Elucidation of molecular mechanism through immunoblot and further validation of the drug effect through in vivo approaches. RESULTS: Initial in vitro anti-proliferative screening of Compounds DPA (7a-t) against multiple cancer cell lines identified Compound DPA (7n) as a potent cytotoxic molecule with IC50 value of 4.3 µM. Down the line, in vitro and in vivo evaluation of Compound DPA (7n) inferred that it has apoptotic inducing potentiality. Further, evaluation of molecular mechanism inferred that Compound DPA (7n) effectively modulates ATM phosphorylation only, eventually altering downstream signalling pathways. CONCLUSIONS: Compound DPA (7n) emerged as a potent proapoptotic and anti-neoplastic agent by inhibiting ATM kinase activity both in vitro and in vivo. The conferring results ascertain that the drug could be developed as a new ATM kinase inhibitor with anti-cancer capacity.


Subject(s)
Acetamides/chemical synthesis , Acetamides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , DNA Damage , Drug Delivery Systems , Animals , Apoptosis , Cell Line, Tumor , DNA Repair , Humans , Mice , Mice, Inbred BALB C , Molecular Structure , Neoplasms, Experimental/drug therapy , Xenograft Model Antitumor Assays
7.
Pharmacol Rep ; 73(5): 1328-1343, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33904146

ABSTRACT

BACKGROUND: Hypoxic microenvironment is a common feature of solid tumors, which leads to the promotion of cancer. The transcription factor, HIF-1α, expressed under hypoxic conditions stimulates tumor angiogenesis, favoring HIF-1α as a promising anticancer agent. On the other hand, synthetic Indolephenoxyacetamide derivatives are known for their pharmacological potentiality. With this background here, we have synthesized, characterized, and validated the new IPA (8a-n) analogs for anti-tumor activity. METHODS: The new series of IPA (8a-n) were synthesized through a multi-step reaction sequence and characterized based on the different spectroscopic analysis FT-IR, 1H, 13C NMR, mass spectra, and elemental analyses. Cell-based screening of IPA (8a-n) was assessed by MTT assay. Anti-angiogenic efficacy of IPA (8k) validated through CAM, Rat corneal, tube formation and migration assay. The underlying molecular mechanism is validated through zymogram and IB studies. The in vivo anti-tumor activity was measured in the DLA solid tumor model. RESULTS: Screening for anti-proliferative studies inferred, IPA (8k) is a lead molecule with an IC50 value of ˜5 µM. Anti-angiogenic assays revealed the angiopreventive activity through inhibition of HIF-1α and modulation downstream regulatory genes, VEGF, MMPs, and P53. The results are confirmative in an in vivo solid tumor model. CONCLUSION: The IPA (8k) is a potent anti-proliferative molecule with anti-angiogenic activity and specifically targets HIF1α, thereby modulates its downstream regulatory genes both in vitro and in vivo. The study provides scope for new target-specific drug development against HIF-1α for the treatment of solid tumors.


Subject(s)
Acetamides/chemical synthesis , Acetamides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Animals , Gene Expression Regulation, Neoplastic/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lymphoma/drug therapy , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , Signal Transduction , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
Biomedicines ; 8(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967366

ABSTRACT

Lung cancer is the leading type of malignancy in terms of occurrence and mortality in the global context. STAT3 is an oncogenic transcription factor that is persistently activated in many types of human malignancies, including lung cancer. In the present report, new oxadiazole conjugated indazoles were synthesized and examined for their anticancer potential in a panel of cancer cell lines. Among the new compounds, 2-(3-(6-chloro-5-methylpyridin-3-yl)phenyl)-5-(1-methyl-1H-indazol-3-yl)-1,3,4-oxadiazole (CHK9) showed consistently good cytotoxicity towards lung cancer cells with IC50 values ranging between 4.8-5.1 µM. The proapoptotic effect of CHK9 was further demonstrated by Annexin-FITC staining and TUNEL assay. In addition, the effect of CHK9 on the activation of STAT3 in lung cancer cells was examined. CHK9 reduced the phosphorylation of STAT3Y705 in a dose-dependent manner. CHK9 had no effect on the activation and expression of JAK2 and STAT5. It also reduced the STAT3-dependent luciferase reporter gene expression. CHK9 increased the expression of proapoptotic (p53 and Bax) proteins and decreased the expression of the antiapoptotic (Bcl-2, Bcl-xL, BID, and ICAM-1) proteins. CHK9 displayed a significant reduction in the number of tumor nodules in the in vivo lung cancer model with suppression of STAT3 activation in tumor tissues. CHK9 did not show substantial toxicity in the normal murine model. Overall, CHK9 inhibits the growth of lung cancer cells and tumors by interfering with the STAT3 signaling pathway.

9.
Biomed Pharmacother ; 103: 1446-1455, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29864929

ABSTRACT

Ten new 2(4-hydroxy-3-benzoyl) benzamide-5-phenyl-1,3,4-oxadiazole derivatives (10a-j) were synthesized by coupling 3-benzoyl-4-hydroxybenzoic acid (5) with 2-amino-5-phenyl-1,3,4-oxadiazoles (9a-j). The structures of these compounds were confirmed by IR, 1H, 13C NMR, and mass spectra, and also by elemental analyses. The anti-inflammatory activity of the compounds 10a-j were investigated by screening them against human red blood cells (HRBC) in-vitro. The results reveal that among this series, compound 10j with hydroxy substituent, particularly at the ortho position of the phenyl ring attached to the 5th carbon atom of the oxadiazole ring possess significant membrane stabilizing activity in comparison with the control. Further, in-vivo chick chorioallantoic membrane (CAM) and rat corneal anti-angiogenesis assays were performed to assess the effect of compound 10j on endothelial cell migration. This confirmed that compound 10j inhibits the proliferation of endothelial cells. Anti-inflammatory studies detected the amelioration of carrageen induced rat hind paw edema. Further in-vivo and in-silico approaches revealed the inhibition of inflammatory marker enzyme cyclooxygenase-2 (Cox-2) and myleoperoxidase (MPO). The study reports that the compound 10j effectively act against the inflammatory mediated anti-angiogenic disorders which could be translated into a new drug in future.


Subject(s)
Benzophenones/chemical synthesis , Benzophenones/therapeutic use , Cyclooxygenase 2 Inhibitors/therapeutic use , Cyclooxygenase 2/metabolism , Edema/drug therapy , Inflammation/drug therapy , Oxadiazoles/chemical synthesis , Oxadiazoles/therapeutic use , Animals , Benzophenones/chemistry , Benzophenones/pharmacology , Chickens , Cyclooxygenase 2 Inhibitors/pharmacology , Edema/complications , Edema/enzymology , Humans , Inflammation/complications , Inflammation/enzymology , Male , Neovascularization, Physiologic/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...