Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1276608, 2024.
Article in English | MEDLINE | ID: mdl-38566962

ABSTRACT

Background and objectives: Hypertension is one of the most serious risk factors and the leading cause of mortality in patients with cardiovascular diseases (CVDs). It is necessary to accurately predict the mortality of patients suffering from CVDs with hypertension. Therefore, this paper proposes a novel cost-sensitive deep neural network (CSDNN)-based mortality prediction model for out-of-hospital acute myocardial infarction (AMI) patients with hypertension on imbalanced data. Methods: The synopsis of our research is as follows. First, the experimental data is extracted from the Korea Acute Myocardial Infarction Registry-National Institutes of Health (KAMIR-NIH) and preprocessed with several approaches. Then the imbalanced experimental dataset is divided into training data (80%) and test data (20%). After that, we design the proposed CSDNN-based mortality prediction model, which can solve the skewed class distribution between the majority and minority classes in the training data. The threshold moving technique is also employed to enhance the performance of the proposed model. Finally, we evaluate the performance of the proposed model using the test data and compare it with other commonly used machine learning (ML) and data sampling-based ensemble models. Moreover, the hyperparameters of all models are optimized through random search strategies with a 5-fold cross-validation approach. Results and discussion: In the result, the proposed CSDNN model with the threshold moving technique yielded the best results on imbalanced data. Additionally, our proposed model outperformed the best ML model and the classic data sampling-based ensemble model with an AUC of 2.58% and 2.55% improvement, respectively. It aids in decision-making and offers a precise mortality prediction for AMI patients with hypertension.

2.
Sensors (Basel) ; 23(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36772390

ABSTRACT

Nowadays, machine learning (ML) is a revolutionary and cutting-edge technology widely used in the medical domain and health informatics in the diagnosis and prognosis of cardiovascular diseases especially. Therefore, we propose a ML-based soft-voting ensemble classifier (SVEC) for the predictive modeling of acute coronary syndrome (ACS) outcomes such as STEMI and NSTEMI, discharge reasons for the patients admitted in the hospitals, and death types for the affected patients during the hospital stay. We used the Korea Acute Myocardial Infarction Registry (KAMIR-NIH) dataset, which has 13,104 patients' data containing 551 features. After data extraction and preprocessing, we used the 125 useful features and applied the SMOTETomek hybrid sampling technique to oversample the data imbalance of minority classes. Our proposed SVEC applied three ML algorithms, such as random forest, extra tree, and the gradient-boosting machine for predictive modeling of our target variables, and compared with the performances of all base classifiers. The experiments showed that the SVEC outperformed other ML-based predictive models in accuracy (99.0733%), precision (99.0742%), recall (99.0734%), F1-score (99.9719%), and the area under the ROC curve (AUC) (99.9702%). Overall, the performance of the SVEC was better than other applied models, but the AUC was slightly lower than the extra tree classifier for the predictive modeling of ACS outcomes. The proposed predictive model outperformed other ML-based models; hence it can be used practically in hospitals for the diagnosis and prediction of heart problems so that timely detection of proper treatments can be chosen, and the occurrence of disease predicted more accurately.


Subject(s)
Acute Coronary Syndrome , Humans , Length of Stay , Acute Coronary Syndrome/diagnosis , Prognosis , Algorithms , Machine Learning
3.
PLoS One ; 16(6): e0249338, 2021.
Article in English | MEDLINE | ID: mdl-34115750

ABSTRACT

OBJECTIVE: Some researchers have studied about early prediction and diagnosis of major adverse cardiovascular events (MACE), but their accuracies were not high. Therefore, this paper proposes a soft voting ensemble classifier (SVE) using machine learning (ML) algorithms. METHODS: We used the Korea Acute Myocardial Infarction Registry dataset and selected 11,189 subjects among 13,104 with the 2-year follow-up. It was subdivided into two groups (ST-segment elevation myocardial infarction (STEMI), non ST-segment elevation myocardial infarction NSTEMI), and then subdivided into training (70%) and test dataset (30%). Third, we selected the ranges of hyper-parameters to find the best prediction model from random forest (RF), extra tree (ET), gradient boosting machine (GBM), and SVE. We generated each ML-based model with the best hyper-parameters, evaluated by 5-fold stratified cross-validation, and then verified by test dataset. Lastly, we compared the performance in the area under the ROC curve (AUC), accuracy, precision, recall, and F-score. RESULTS: The accuracies for RF, ET, GBM, and SVE were (88.85%, 88.94%, 87.84%, 90.93%) for complete dataset, (84.81%, 85.00%, 83.70%, 89.07%) STEMI, (88.81%, 88.05%, 91.23%, 91.38%) NSTEMI. The AUC values in RF were (98.96%, 98.15%, 98.81%), ET (99.54%, 99.02%, 99.00%), GBM (98.92%, 99.33%, 99.41%), and SVE (99.61%, 99.49%, 99.42%) for complete dataset, STEMI, and NSTEMI, respectively. Consequently, the accuracy and AUC in SVE outperformed other ML models. CONCLUSIONS: The performance of our SVE was significantly higher than other machine learning models (RF, ET, GBM) and its major prognostic factors were different. This paper will lead to the development of early risk prediction and diagnosis tool of MACE in ACS patients.


Subject(s)
Acute Coronary Syndrome/complications , Acute Coronary Syndrome/diagnosis , Non-ST Elevated Myocardial Infarction/complications , ST Elevation Myocardial Infarction/complications , Aged , Female , Humans , Machine Learning , Male , Middle Aged , Prognosis
4.
Health Informatics J ; 26(2): 1289-1304, 2020 06.
Article in English | MEDLINE | ID: mdl-31566458

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide so, early prediction and diagnosis of cardiovascular disease is essential for patients affected by this fatal disease. The goal of this article is to propose a machine learning-based 1-year mortality prediction model after discharge in clinical patients with acute coronary syndrome. We used the Korea Acute Myocardial Infarction Registry data set, a cardiovascular disease database registered in 52 hospitals in Korea for 1 November 2005-30 January 2008 and selected 10,813 subjects with 1-year follow-up traceability. The ranges of hyperparameters to find the best prediction model were selected from four different machine learning models. Then, we generated each machine learning-based mortality prediction model with hyperparameters completed the range fitness via grid search using training data and was evaluated by fourfold stratified cross-validation. The best prediction model with the highest performance was found, and its hyperparameters were extracted. Finally, we compared the performance of machine learning-based mortality prediction models with GRACE in area under the receiver operating characteristic curve, precision, recall, accuracy, and F-score. The area under the receiver operating characteristic curve in applied machine learning algorithms was averagely improved up to 0.08 than in GRACE, and their major prognostic factors were different. This implementation would be beneficial for prediction and early detection of major adverse cardiovascular events in acute coronary syndrome patients.


Subject(s)
Acute Coronary Syndrome , Acute Coronary Syndrome/diagnosis , Hospitals , Humans , Machine Learning , Patient Discharge , Republic of Korea , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...