Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 935: 173262, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38768719

ABSTRACT

Growing concerns about pesticide residues in agriculture are pushing the scientific community to develop innovative and efficient methods for detecting these substances at low concentrations down to the molecular level. In this context, surface-enhanced Raman spectroscopy (SERS) is a powerful analytical method that has so far already undergone some validation for its effectiveness in pesticide detection. However, despite its great potential, SERS faces significant difficulties obtaining reproducible and accurate pesticide spectra, particularly for some of the most widely used pesticides, such as malathion, chlorpyrifos, and imidacloprid. Those inconsistencies can be attributed to several factors, such as interactions between pesticides and SERS substrates and the variety of substrates and solvents used. In addition, differences in the equipment used to obtain SERS spectra and the lack of standards for control experiments further complicate the reproducibility and reliability of SERS data. This review systematically discusses the problems mentioned above, including a comprehensive analysis of the challenges in precisely evaluating SERS spectra for pesticide detection. We not only point out the existing limitations of the method, which can be traced in previous review works, but also offer practical recommendations to improve the quality and comparability of SERS spectra, thereby expanding the potential applications of the method in such an essential field as pesticide detection.

2.
ACS Sens ; 9(4): 1809-1819, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38587867

ABSTRACT

While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 µm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.


Subject(s)
Graphite , Lasers , Textiles , Graphite/chemistry , Humans , Electrochemical Techniques/methods , Nanocomposites/chemistry , Electric Conductivity , Polyethylene Terephthalates/chemistry , Animals , Biocompatible Materials/chemistry , Biosensing Techniques/methods
3.
Polymers (Basel) ; 15(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38139874

ABSTRACT

Flexible electronics have sparked significant interest in the development of electrically conductive polymer-based composite materials. While efforts are being made to fabricate these composites through laser integration techniques, a versatile methodology applicable to a broad range of thermoplastic polymers remains elusive. Moreover, the underlying mechanisms driving the formation of such composites are not thoroughly understood. Addressing this knowledge gap, our research focuses on the core processes determining the integration of reduced graphene oxide (rGO) with polymers to engineer coatings that are not only flexible and robust but also exhibit electrical conductivity. Notably, we have identified a particular range of laser power densities (between 0.8 and 1.83 kW/cm2), which enables obtaining graphene polymer composite coatings for a large set of thermoplastic polymers. These laser parameters are primarily defined by the thermal properties of the polymers as confirmed by thermal analysis as well as numerical simulations. Scanning electron microscopy with elemental analysis and X-ray photoelectron spectroscopy showed that conductivity can be achieved by two mechanisms-rGO integration and polymer carbonization. Additionally, high-speed videos allowed us to capture the graphene oxide (GO) modification and melt pool formation during laser processing. The cross-sectional analysis of the laser-processed samples showed that the convective flows are present in the polymer substrate explaining the observed behavior. Moreover, the practical application of our research is exemplified through the successful assembly of a conductive wristband for wearable devices. Our study not only fills a critical knowledge gap but also offers a tangible illustration of the potential impact of laser-induced rGO-polymer integration in materials science and engineering applications.

4.
Mater Today Bio ; 22: 100784, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37731959

ABSTRACT

Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.

5.
Commun Chem ; 6(1): 166, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580376

ABSTRACT

Metallic nanoparticles are widely explored for boosting light-matter coupling, optoelectronic response, and improving photocatalytic performance of two-dimensional (2D) materials. However, the target area is restricted to either top or bottom of the 2D flakes. Here, we introduce an approach for edge-specific nanoparticle decoration via light-assisted reduction of silver ions and merging of silver seeds. We observe arrays of the self-limited in size silver nanoparticles along tungsten diselenide WSe2 nanoribbon edges. The density of nanoparticles is tunable by adjusting the laser fluence. Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy are used to investigate the size, distribution, and photo-response of the deposited plasmonic nanoparticles on the quasi-one-dimensional nanoribbons. We report an on-surface synthesis path for creating mixed-dimensional heterostructures and heterojunctions with potential applications in opto-electronics, plasmonics, and catalysis, offering improved light matter coupling, optoelectronics response, and photocatalytic performance of 2D materials.

6.
ACS Appl Mater Interfaces ; 15(32): 38946-38955, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37466067

ABSTRACT

The concept of wearables is rapidly evolving from flexible polymer-based devices to textile electronics. The reason for this shift is the ability of textiles to ensure close contact with the skin, resulting in comfortable, lightweight, and compact "always with you" sensors. We are contributing to this polymer-textile transition by introducing a novel and simple way of laser intermixing of graphene with synthetic fabrics to create wearable sensing platforms. Our hybrid materials exhibit high electrical conductivity (87.6 ± 36.2 Ω/sq) due to the laser reduction of graphene oxide and simultaneous laser-induced graphene formation on the surface of textiles. Furthermore, the composite created between graphene and nylon ensures the durability of our materials against sonication and washing with detergents. Both of these factors are essential for real-life applications, but what is especially useful is that our free-form composites could be used as-fabricated without encapsulation, which is typically required for conventional laser-scribed materials. We demonstrate the exceptional versatility of our new hybrid textiles by successfully recording muscle activity, heartbeat, and voice. We also show a gesture sensor and an electrothermal heater embedded within a single commercial glove. Additionally, the use of these textiles could be extended to personal protection equipment and smart clothes. We achieve this by implementing self-sterilization with light and laser-induced functionalization with silver nanoparticles, which results in multifunctional antibacterial textiles. Moreover, incorporating silver into such fabrics enables their use as surface-enhanced Raman spectroscopy sensors, allowing for the direct analysis of drugs and sweat components on the clothing itself. Our research offers valuable insights into simple and scalable processes of textile-based electronics, opening up new possibilities for paradigms like the Internet of Medical Things.

7.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903801

ABSTRACT

Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor's performance when exposed to prostate cancer cells' media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.

8.
Adv Mater ; 34(43): e2206877, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36038983

ABSTRACT

Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq-1 ) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID /IG  = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10-9  m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h.

9.
Crit Rev Anal Chem ; : 1-25, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35435777

ABSTRACT

One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.

10.
Anal Chim Acta ; 1187: 338978, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34753586

ABSTRACT

With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.


Subject(s)
Quality of Life , Spectrum Analysis, Raman , Humans
11.
Sensors (Basel) ; 21(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208587

ABSTRACT

Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.


Subject(s)
Biosensing Techniques , Nanocomposites , Electrochemical Techniques , Water , Water Quality
12.
ACS Omega ; 5(17): 10183-10190, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32391506

ABSTRACT

We report the high-powered laser modification of the chemical, physical, and structural properties of the two-dimensional (2D) van der Waals material GaSe. Our results show that contrary to expectations and previous reports, GaSe at the periphery of a high-power laser beam does not entirely decompose into Se and Ga2O3. In contrast, we find unexpectedly that the Raman signal from GaSe gets amplified around regions where it was not expected to exist. Atomic force microscopy (AFM), dielectric force microscopy (DFM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) results show that laser irradiation induces the formation of nanoparticles. Our analyses demonstrate that, except for a fraction of Ga2Se3, these nanoparticles still belong to the GaSe phase but possess different electrical and optical properties. These changes are evidenced in the increased Raman intensity attributed to the near-resonance conditions with the Raman excitation laser. The elemental analysis of nanoparticles shows that the relative selenium content increased to as much as 70% from a 50:50 value in stoichiometric GaSe. This elemental change is related to the formation of the Ga2Se3 phase identified by Raman spectroscopy at some locations near the edge. Further, we exploit the localized high-power laser processing of GaSe to induce the formation of Ag-GaSe nanostructures by exposure to a solution of AgNO3. The selective reaction of AgNO3 with laser-irradiated GaSe gives rise to composite nanostructures that display photocatalytic activity originally absent in the pristine 2D material. The photocatalytic activity was investigated by the transformation of 4-nitrobenzenethiol to its amino and dimer forms detected in situ by Raman spectroscopy. This work improves the understanding of light-matter interaction in layered systems, offering an approach to the formation of laser-induced composites with added functionality.

13.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013163

ABSTRACT

The properties and applications of Ag nanowires (AgNWs) are closely related to their morphology and composition. Therefore, controlling the growth process of AgNWs is of great significance for technological applications and fundamental research. Here, silver nanowires (AgNWs) were synthesized via a typical polyol method with the synergistic effect of Cl-, Br-, and Fe3+ mediated agents. The synergistic impact of these mediated agents was investigated intensively, revealing that trace Fe3+ ions provided selective etching and hindered the strong etching effect from Cl- and Br- ions. Controlling this synergy allowed the obtainment of highly uniform AgNWs with sub-30 nm diameter and an aspect ratio of over 3000. Transparent conductive films (TCFs) based on these AgNWs without any post-treatment showed a very low sheet resistance of 4.7 Ω sq-1, a low haze of 1.08% at a high optical transmittance of 95.2% (at 550 nm), and a high figure of merit (FOM) of 1210. TCFs exhibited a robust electrical performance with almost unchanged resistance after 2500 bending cycles. These excellent high-performance characteristics demonstrate the enormous potential of our AgNWs in the field of flexible and transparent materials.

14.
ACS Appl Mater Interfaces ; 12(8): 9797-9805, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31999093

ABSTRACT

Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation.

15.
Phys Chem Chem Phys ; 21(19): 10125-10134, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31062795

ABSTRACT

Raman spectroscopy is the tool of choice in the physicochemical investigation of carbon nanomaterials. However, Raman analysis of graphene oxide (GO) is lagging in comparison to the rich information gained in the case of carbon nanotubes and graphene. Here, we carried out a joint current sensing atomic force microscopy (CSAFM) and Raman spectroscopy investigation of laser-reduced GO. Reduced graphene oxide (rGO) was obtained under different laser powers in the range from 0.1 to 10 mW (532 nm). We compare the Raman spectra and the electrical conductivity at the nanoscale obtained by current sensing atomic force microscopy. Our analysis shows that three bands in the second-order region (2D, D + G, 2G), in the range from 2500 to 3200 cm-1, are uniquely sensitive to the degree of reduction. Moreover, we found that the changes in peak area ratios AD+G/AD and A2G/AD show a direct correlation with the electrical resistance of rGO. We establish an optical micro-spectroscopy way to assess the degree of reduction in laser-reduced GO. These new insights provide a convenient and useful way to investigate the reduction of rGO from the fitting analysis of Raman spectra, becoming a useful tool in fundamental research and the development of rGO-based microdevices.

16.
Analyst ; 144(10): 3297-3306, 2019 May 13.
Article in English | MEDLINE | ID: mdl-30968075

ABSTRACT

Graphene oxide (GO) films are deposited on flexible Kapton substrates and selectively modified to conductive reduced graphene oxide (rGO) electrodes using laser patterning. Based on this, we design, fabricate, and test a flexible sensor integrating laser-reduced GO with silver plasmonic nanostructures. The fabricated device results in dual transduction channels: for electrochemical and plasmonic nanostructure-based surface-enhanced Raman spectroscopy (SERS) detection. The spectroscopic analysis verifying the formation of rGO and the modification by silver nanostructures is performed by Raman, energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The morphological investigation is followed by optical and scanning electron microscopy imaging. In addition to pristine silver nanostructures, the Raman spectroscopy results show the formation of species such as Ag2O, Ag2CO3, and Ag2SOx. A dual-channel sensor device based on electrochemical and plasmonic detection is fabricated as a demonstration of our Ag-rGO flexible concept architecture. The dual-channel device performance is successfully demonstrated in the electrochemical and SERS detection of 4-nitrobenzenethiol (4-NBT) using the same device. Our results show that without Ag nanostructures the sensitivity in the electrochemical and optical channels is not sufficient to detect 4-NBT. The performance and stability of the silver modified device are also verified. This work demonstrates an inexpensive, highly efficient, and greener way that is compatible with solution-processing technology for the production of flexible GO-based electrochemical and SERS detection devices integrated with plasmonic nanostructures.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 155-159, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30634132

ABSTRACT

Agricultural monitoring is required to enhance crop production, control plant stress, and predict pests and crop infection. Apart from monitoring the external influences, the state of the plant itself must be tracked. However, the modern methods for plant analysis are expensive and require plants processing often in a destructive way. Optical spectroscopy can be used for the non-invasive monitoring requiring no consumables, and little to none sample preparation. In this context, we found that the red beet growth can be monitored by Raman spectroscopy. Our analysis shows that, as plants age, the rate of betalain content increases. This increase makes betalain dominate the whole Raman spectra over other plant components. The dominance of betalain facilitates its use as a molecular marker for plant growth. This finding has implications in the understanding of plant physiology, particularly important for greenhouse growth and the optimization of external conditions such as artificial illumination.


Subject(s)
Beta vulgaris/growth & development , Spectrum Analysis, Raman/methods , Plant Leaves/chemistry , Plant Stems/chemistry
18.
RSC Adv ; 8(40): 22569-22576, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-35539709

ABSTRACT

Efficient substrates for surface-enhanced Raman spectroscopy (SERS) are under constant development, since time-consuming and costly fabrication routines are often an issue for high-throughput spectroscopy applications. In this research, we use a two-step fabrication method to produce self-organized parallel-oriented plasmonic gold nanostructures. The fabrication routine is ready for wafer-scale production involving only low-energy ion beam irradiation and metal deposition. The optical spectroscopy features of the resulting structures show a successful bidirectional plasmonic response. The localized surface plasmon resonances (LSPRs) of each direction are independent from each other and can be tuned by the fabrication parameters. This ability to tune the LSPR characteristics allows the development of optimized plasmonic nanostructures to match different laser excitations and optical transitions for any arbitrary analyte. Moreover, in this study, we probe the polarization and wavelength dependence of such bidirectional plasmonic nanostructures by a complementary spectroscopic ellipsometry and Raman spectroscopy analysis. We observe a significant signal amplification by the SERS substrates and determine enhancement factors of over a thousand times. We also perform finite element method-based calculations of the electromagnetic enhancement for the SERS signal provided by the plasmonic nanostructures. The calculations are based on realistic models constructed using the same particle sizes and shapes experimentally determined by scanning electron microscopy. The spatial distribution of electric field enhancement shows some dispersion in the LSPR, which is a direct consequence of the semi-random distribution of hotspots. The signal enhancement is highly efficient, making our SERS substrates attractive candidates for high-throughput chemical sensing applications in which directionality, chemical stability, and large-scale fabrication are essential requirements.

19.
ACS Appl Mater Interfaces ; 8(7): 4994-5001, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26812580

ABSTRACT

This work is driven by the vision of engineering planar field emitters with ferromagnetic metal-insulator nanocomposite thin films, using swift heavy ion (SHI) irradiation method. FeCo nanoparticles inside SiO2 matrix, when subjected to SHI get elongated. Using this, we demonstrate here a planar field emitter with maximum current density of 550 µA/cm(2) at an applied field of 15 V/µm. The film, irradiated with 5 × 10(13) ions/cm(2) fluence (5e13) of 120 MeV Au(9+) ions, shows very high electron emitting quantum efficiency in comparison to its unirradiated counterpart. Surface enhanced Raman spectroscopy analysis of unirradiated and 5e13 films further confirms that the field emission (FE) enhancement is not only due to surface protrusions but also depends on the properties of entire matrix. We find experimental evidence of enhanced valence band density of states (VB DOS) for 5e13 film from XPS, which is verified in the electronic structure of a model FeCo cluster from first-principles based calculations combining density functional theory (DFT) and molecular dynamics (MD) simulations. The MD temperature is selected from the lattice temperature profile inside nanoparticles as deduced from thermal spike model. Increasing the irradiation fluence beyond 5e13, results in reduced VB DOS and melting of surface protrusions, thus causing reduction of FE current density. We finally conclude from theoretical analysis that change in fluence alters the co-ordination chemistry followed by the charge distribution and spin alignment, which influence the VB DOS and concurrent FE as evident from our experiment.

20.
Sci Rep ; 5: 13150, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26310910

ABSTRACT

Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.


Subject(s)
Saccharomyces cerevisiae/cytology , Spectrum Analysis, Raman/methods , Computer Simulation , Metal Nanoparticles/chemistry , Microscopy, Atomic Force , Silver/chemistry , Single-Cell Analysis , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...