Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 341: 122873, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37949161

ABSTRACT

Acid mine drainage (AMD) is a form of environmental pollution from mining activity that can negatively affect soil environments by acidification, salinisation, and metal(loid) contamination. The use of plants to remediate (phytoremediation) these impacted environments while generating plant-based value is a promising approach to more accessible and cost-benefiting restoration of post-mining, marginal lands. In this study, a 3-month growth-chamber pot experiment was conducted to investigate the influence of co-cropping two plant species, Chrysopogon zizanioides (vetiver grass) and the legume Medicago truncatula (barrel clover) with a wheat straw biochar amendment on the phytostabilisation of metal(loid)s Cr, Zn, and As and the phytoextraction of rare earth element (REE) in an AMD impacted soil from a gold mining region in South Africa. The results showed that co-cropping with vetiver significantly lowered the legume's Cr, Zn, and As root contents by 80%, 32% and 54%, respectively, and improved the plant's overall metal(loid) tolerance by increasing its translocation from root to shoot tissue. The biochar further inhibited root uptake of Cr and Zn, by 71% and 36%, and increased the legume biomass by 40%. Both plant species and cropping treatments exhibited low REE extraction capabilities by shoot tissue, which accounted for less than 0.2% of total soil REE contents. The study shows that co-cropping with vetiver and biochar amendment are effective tools for the phytoremediation of AMD impacted soil mainly by lowering plant uptake and improving plant metal(loid) tolerance. Likely mechanisms at play include the alteration of rhizosphere chemistry and species-specific physiological and molecular responses. These effects offer support for the phytostabilisation of AMD impacted soil with the generation of plant-based value through dual (and safe) cultivation (phytoprotection) rather than through REE recovery from plant biomass (phytoextraction). These techniques could allow for the simultaneous restoration of post-mining, mining-impacted and marginal lands with agricultural production.


Subject(s)
Chrysopogon , Fabaceae , Soil Pollutants , Biodegradation, Environmental , Soil/chemistry , Gold , Acids , Vegetables , Soil Pollutants/analysis
2.
Sci Total Environ ; 811: 152230, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34896134

ABSTRACT

Acid mine drainage (AMD), a waste product of mining activities containing sulfates, iron and heavy metals, causes severe environmental degradation and pose risks to human health and sustainable development. Areas impacted by AMD are lacking remediation techniques that holistically address the ecologic, social, and economic needs of affected communities, for which phytoremediation is a promising solution. This review article introduces AMD and AMD-impacted environments and critically discusses phytomanagement, phytoprotection, and phytorestoration approaches towards AMD-impacted environments. Continued research and application of such approaches will help optimize resource and revenue-generating potentials, address biodiversity loss and carbon storage concerns of climate change, and promote sustainable agricultural management. With a focus on energy crops, phytomining critical elements, carbon storage, co-cropping, allelopathy, and ecosystem restoration, this review examines phytoremediation research that addresses positive economic and environmental opportunities for AMD-impacted environments.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Acids , Biodegradation, Environmental , Ecosystem , Humans , Mining , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 752: 141818, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32889269

ABSTRACT

Understanding the flow behaviour and accounting for time in constructed wetlands is necessary for the modelling and design of these systems. The addition of a tracer into the feed of a horizontal subsurface flow wetland allows the researcher to understand the flow of the fluid through the system, especially if the mass of the tracer is conserved (i.e. the mass of tracer injected is equal to the mass of tracer leaving the system). Conservative tracers, however, may pose a problem when it comes to the disposal of the effluent of the system if they are hazardous to the environment. In this study, the use of benzoate as a non-conservative degradable hydraulic tracer was investigated. The response curve of such a tracer is distorted due to its degradation within the wetland and hence the mass leaving the system is not equal to the mass injected. As a result, the typical hydraulic performance parameters obtained from tracer-response curves cannot be accurately calculated. In this paper, a curve-shift technique was developed by using a benzoate step-change curve as an input and using mathematical techniques to transform it into a conservative tracer-response curve. This was done through establishing a mathematical relationship between the retardation and hydrodynamic dispersion of benzoate and a known conservative tracer, uranine. This methodology was tested by conducting a dual tracer study using both benzoate and uranine and comparing the shifted benzoate response curve with the uranine response curve. Hydraulic parameters including mean residence time, effective volume ratio and hydraulic efficiency for each of these tracers were also compared.

4.
Br J Sports Med ; 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33361278

ABSTRACT

The COVID-19 pandemic has necessitated many novel responses in healthcare including sport and exercise medicine. The cessation of elite sport almost globally has had significant economic implications and resulted in pressure to resume sport in very controlled conditions. This includes protecting pitch-side medical staff and players from infection. The ongoing prevalence of SARS-CoV-2 and the desire to resume professional sport required urgent best practice guidelines to be developed so that sport could be resumed as safely as possible. This set of best practice recommendations assembles early evidence for managing SARS-CoV-2 and integrates expert opinion to provide a uniform and pragmatic approach to enhance on-field and pitch-side safety for the clinician and player. The nature of SARS-CoV-2 transmission creates new hazards during resuscitation and emergency care and procedures. Recommendations for the use and type of personal protective equipment during on-field or pitch-side emergency medical care is provided based on the clinical scenario and projected risk of viral transmission.

5.
Clin J Sport Med ; 30(5): e169-e171, 2020 09.
Article in English | MEDLINE | ID: mdl-31219929

ABSTRACT

Foot drop is a reduction in ankle dorsiflexion during the swing phase of gait. We report a case of a 51-year-old recreational runner and cyclist who presented with intermittent left foot drop initially triggered by running distances in excess of 10 km. The patient was investigated with magnetic resonance imaging (MRI) of the spine and leg, nerve conduction studies, electromyography, and compartment pressure testing, which were all normal. Surgical release of fascia, which was restricting the common peroneal (fibular) nerve, failed to resolve her symptoms. Subsequent brain MRI revealed demyelination. This case describes the unusual case of a recreational runner presenting with exercise-induced foot drop secondary to multiple sclerosis (MS). Motor fatigability is a common feature of MS, and this case highlights the need to remain cognizant of central and peripheral causes of exertional lower limb pathology, particularly in the absence of pain.


Subject(s)
Multiple Sclerosis/complications , Peroneal Neuropathies/etiology , Running , Bicycling , Brain/diagnostic imaging , Fasciotomy , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Multiple Sclerosis/diagnostic imaging , Peroneal Nerve , Recreation , Recurrence
6.
Sci Total Environ ; 646: 880-892, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30235647

ABSTRACT

This paper describes the hydraulic performance of a start-up, pilot-scale, horizontal sub-surface flow constructed wetland (CW), located outdoors at the Helmholtz UFZ, Leipzig. This paper aims to investigate the impact of the method of hydraulic calculation in a pilot-scale system. Impulse-response tracer tests were conducted at multiple depths and locations throughout the system and the uranine concentration was measured using a fluorometer. In addition, the volumetric flow rate was closely monitored and climatic data was gathered to support the hydraulic results. Werner and Kadlec's modified residence time distribution (RTD) theory (originally developed for systems with large flow rate and volume fluctuations) was applied and the results compared to those obtained using classic RTD theory. Progressive uranine dispersion, broadening of the RTD base, a change in peak shape and extended tailing were observed with increasing distance. All of these factors indicated deviation from plug flow and mixing effects with low-to-moderate dead volume. As this was a non-steady flow system, application of modified RTD theory ensured that the first moments of the normalized breakthrough curves and RTD functions were always unity. The Student's t-test (95% confidence) showed that the outlet RTDs calculated assuming steady-flow were significantly different, but those determined using the modified theory were closely comparable. In general, a decrease in flow rate from inlet to outlet was observed and fluctuations in the outflow were linked to climatic conditions. August was characterized by the highest temperatures, high global radiation and high rates of evapotranspiration. Low or no outflow was recorded in conjunction with high evapotranspiration. The lowest temperatures, low global radiation, low evapotranspiration and high humidity were recorded in October, as well as the second highest rainfall (82 mm) after June (115 mm). Surges in outflow were observed with rain events.

7.
Sci Total Environ ; 637-638: 1252-1261, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29801218

ABSTRACT

Dispersion of hexavalent chromium (Cr(VI)) in streams around nickel laterite mines, which are mostly located in the tropics, may pose serious risks for the environment and human health. In an earlier study, a local natural wetland effectively removed Cr from a nickel mine environment in Indonesia. In order to understand the processes and conditions that would facilitate the establishment of operational constructed wetlands that would remove Cr from mine water discharge, we used two native macrophyte species from the same wetland, Lepironia articulata and Machaerina rubiginosa, in a series of mesocosm experiments to follow the distribution of Cr species in water, substrate and plants. A 1 m3 mesocosm was charged with a sand/compost mixture to a depth of 0.5 m, filled to within 0.1 m from the top by water with Cr concentrations of about 1.0 mg L-1, similar to mine discharge water, and plants were introduced to part of the substrate surface. Stage 1 of the experiment supplied and removed fresh water continuously by surface flow, maintaining a residence time of 12 h. In stages, the water was recirculated (Stage 2), more plants were added (Stage 3) and outflow conditions were changed from totally surface to partially from beneath the substrate (Stage 4). All stages lowered Cr concentrations at the surface water outflow, but Cr concentrations were lower again close to the sediment/water interface. Due to the reduction of Cr(VI), the Cr concentrations in substrate pore water were higher near the surface compared to those at depth, and the pore water concentrations of Cr(VI) and total Cr were higher in the vegetated area compared to the non-vegetated area. Higher plant density and mixed species composition of the macrophytes did not increase the efficiency of Cr(VI) removal from the system. The hybrid system, comprising surface and below-substrate outflow (Stage 4), removed hexavalent chromium at a much higher rate than surface outflow only.


Subject(s)
Chromium/chemistry , Water Pollutants, Chemical/chemistry , Wetlands , Biodegradation, Environmental , Indonesia
8.
Sci Total Environ ; 637-638: 132-136, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29751295

ABSTRACT

South Africa has a wide range of mining activities making mineral resources important economic commodities. However, the industry is responsible for several environmental impacts; one of which is acid mine drainage (AMD). Despite several years of research, attempts to prevent AMD generation have proven to be difficult. Therefore, treatment of the resulting drainage has been common practice over the years. One of the recommended treatment methods is the use of second generation feedstocks (lignocellulosic biomass). This biomass is also acknowledged to be an important feedstock for bio-refineries as it is abundant, has a high carbon content and is available at minimal cost. It can also potentially be converted to fermentable sugars (e.g. glucose) through different treatment steps, which could further yield other valuable commodities (cellulase, poly-ß-hydroxybutyric acid (PHB) and penicillin V). It is estimated by a generic flowsheet model that 7 tons of grass biomass can produce 1400 kg of glucose which can subsequently produce 205 kg, 438 kg and 270 kg of cellulase, PHB and Penicillin V, respectively. In this paper we investigate the feasibility of grass as feedstock for AMD treatment and the subsequent conversion of this acid pre-treated grass into valuable bio-products.


Subject(s)
Mining , Waste Disposal, Fluid/methods , Acids , Biomass , Minerals , South Africa
9.
Appl Ergon ; 57: 36-47, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27126802

ABSTRACT

This intergroup case study compared users' mental models with an expert design model of a water management system in a green building. The system incorporates a constructed wetland component and a rainwater collection pond that together recycle water for re-use in the building and its surroundings. The sample consisted of five building occupants and the cleaner (6 users) and two experts who were involved with the design of the water management system. Users' mental model descriptions and the experts' design model were derived from in-depth interviews combined with self-constructed (and verified) diagrams. Findings from the study suggest that there is considerable variability in the user mental models that could impact the efficient functioning of the water management system. Recommendations for improvements are discussed.


Subject(s)
Facility Design and Construction , Models, Psychological , Water Supply/methods , Adult , Conservation of Natural Resources , Female , Humans , Interviews as Topic , Male , Middle Aged , Rain , Wetlands
10.
Hear Res ; 270(1-2): 119-26, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20813177

ABSTRACT

We examined membrane properties and synaptic responses of neurons in the mouse lateral superior olivary nucleus (LSO). Two clear populations were identified consistent with: principal neurons which are involved in detecting interaural intensity differences (IIDs) and efferent neurons of the lateral olivocochlear (LOC) system which project to the cochlea. Principal neurons fired a short latency action potential (AP) often followed by an AP train during maintained depolarization. They possessed sustained outward K(+) currents, with little or no transient K(+) current (I(A)) and a prominent hyperpolarization-activated non-specific cation conductance, I(H). On depolarization, LOC neurons exhibited a characteristic delay to the first AP. These neurons possessed a prominent transient outward current I(A), but had no I(H). Both LOC and principal neurons received glutamatergic and glycinergic synaptic inputs. LOC synaptic responses decayed more slowly than those of principal neurons; the mean decay time constant of AMPA receptor-mediated EPSCs was around 1 ms in principal neurons and 4 ms in LOC neurons. Decay time constants for glycinergic IPSCs were around 5 ms in principal neurons and 10 ms in LOC neurons. We conclude that principal cells receive fast synaptic responses appropriate for integration of IID inputs, while the LOC cells possess excitatory and inhibitory receptors with much slower kinetics.


Subject(s)
Auditory Pathways/physiology , Cochlear Nerve/physiology , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Neurons/physiology , Olivary Nucleus/physiology , Animals , Auditory Pathways/cytology , Auditory Pathways/drug effects , Cochlear Nerve/cytology , Cochlear Nerve/drug effects , Cyclic Nucleotide-Gated Cation Channels/metabolism , Excitatory Postsynaptic Potentials/drug effects , Glutamic Acid/metabolism , Glycine/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Kinetics , Mice , Mice, Inbred CBA , Neurons/drug effects , Neurons, Efferent/physiology , Neurotransmitter Agents/pharmacology , Olivary Nucleus/cytology , Olivary Nucleus/drug effects , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channels/metabolism , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...