Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Med Phys Fitness ; 60(3): 361-366, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31958003

ABSTRACT

BACKGROUND: Dehydration is common among athletes. The negative impact of dehydration on aerobic performance is well characterized. However, little is known about the effect of dehydration on anaerobic performance particularly when dehydration results from insufficient water intake, not water loss due to body temperature regulation. The purpose of this study was to examine the effect of dehydration on anaerobic performance following voluntary water intake reduction. METHODS: Fifteen healthy adults completed two exercise sessions, euhydrated (EUD) and dehydrated (DEH). Sessions consisted of baseline anthropometric and blood lactate measurement followed by a 30-second Wingate test and three vertical jump trials to measure anaerobic performance. Additional blood lactate measurements were taken immediately and at 5, 10, and 15 minutes after taking the Wingate test. RESULTS: The dehydration protocol resulted in a reduction in body mass (EUD 69.1±17.2 kg, DEH 68.1±16.6 kg, P=0.039). The 30-s Wingate peak power (EUD 971±302 W, DEH 960±316 W, P=0.578) was not different between conditions, nor was the vertical jump height (EUH 26.4±4.5 cm, DEH 26.6±3.6 cm, P=0.778). Blood lactate (P<0.001) was elevated immediately following the 30-s Wingate test which remained throughout the trial. There were no differences in blood lactate between conditions. CONCLUSIONS: Acute anaerobic power and exercise performance is not negatively affected by voluntary dehydration.


Subject(s)
Dehydration/physiopathology , Water/metabolism , Adult , Anaerobiosis , Athletes , Athletic Performance , Body Temperature Regulation , Dehydration/metabolism , Drinking , Exercise Test , Female , Humans , Lactic Acid/blood , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...