Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 222, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767725

ABSTRACT

BACKGROUND: Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE: Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS: Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION: Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenome , Genome, Plant , Solanum lycopersicum , Solanum lycopersicum/genetics , DNA Methylation/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics
2.
Mol Ecol ; : e17413, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771006

ABSTRACT

Interspecific hybridization increases genetic diversity, which is essential for coping with changing environments. Hybrid zones, occurring naturally in overlapping habitats of closely related species, can be artificially established during afforestation. The resulting interspecific hybridization may promote sustainability in artificial forests, particularly in regions facing degradation due to climate change. Currently, there is limited evidence of hybridization during regeneration of artificial forests. Here, we studied the frequency of Pinus brutia Ten. × P. halepensis Mill. hybridization in five planted forests in Israel in three stages of forest regeneration: seeds before dispersal, emerged seedlings and recruited seedlings at the end of the dry season. We found hybrids on P. brutia, but not on P. halepensis trees due to asynchronous cone production phenology. Using 94 single-nucleotide polymorphism (SNP) markers, we found hybrids at all stages, most of which were hybrids of advanced generations. The hybrid proportions increased from 4.7 ± 2.1 to 8.2 ± 1.4 and 21.6 ± 6.4 per cent, from seeds to emerged seedlings and to recruited seedlings stages, respectively. The increased hybrid ratio implies an advantage of hybrids over P. brutia during forest regeneration. To test this hypothesis, we measured seedling growth rate and morphological traits under controlled conditions and found that the hybrid seedlings exhibited selected traits of the two parental species, which likely contributed to the fitness and survival of the hybrids during the dry season. This study highlights the potential contribution of hybrids to sustainable-planted forests and contributes to the understanding of genetic changes that occur during the regeneration of artificial forests.

3.
Hortic Res ; 10(11): uhad208, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38046855

ABSTRACT

The propagation of cultivated garlic relies on vegetative cloves, thus flowers become non-essential for reproduction in this species, driving the evolution of reproductive feature-derived traits. To obtain insights into the evolutionary alteration of reproductive traits in the clonally propagated garlic, the evolutionary histories of two main reproduction-related traits, bolting and flower differentiation, were explored by genome analyses using 134 accessions displaying wide diversity in these two traits. Resequencing identified 272.8 million variations in the garlic genome, 198.0 million of which represent novel variants. Population analysis identified five garlic groups that have evolved into two clades. Gene expression, single-cell transcriptome sequencing, and genome-wide trait association analyses have identified numerous candidates that correlate with reproductive transition and flower development, some of which display distinct selection signatures. Selective forces acting on the B-box zinc finger protein-encoding Asa2G00291.1, the global transcription factor group E protein-encoding Asa5G01527.1, and VERNALIZATION INSENSITIVE 3-like Asa3G03399.1 appear to be representative of the evolution of garlic bolting. Plenty of novel genomic variations and trait-related candidates represent valuable resources for biological studies of garlic. Numerous selective signatures from genes associated with the two chosen reproductive traits provide important insights into the evolutionary history of reproduction in this clonally propagated crop.

4.
Hortic Res ; 10(12): uhad227, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38077495

ABSTRACT

Sexual reproduction in plants is the main pathway for creating new genetic combinations in modern agriculture. In heterozygous plants, after the identification of a plant with desired traits, vegetative propagation (cloning) is the primary path to create genetically uniform plants. Another natural plant mechanism that creates genetically uniform plants (clones) is apomixis. In fruit crops like citrus and mango, sporophytic apomixis results in polyembryony, where seeds contain multiple embryos, one of which is sexually originated and the others are vegetative clones of the parent mother tree. Utilizing the mango genome and genetic analysis of a diverse germplasm collection, we identified MiRWP as the gene that causes polyembryony in mango. There is a strong correlation between a specific insertion in the gene's promoter region and altered expression in flowers and developing fruitlets, inducing multiple embryos. The MiRWP gene is an ortholog of CitRWP that causes polyembryony in citrus. Based on the data, we speculate that promoter insertion events, which occurred independently in citrus and mango, induced nucellar embryogenesis. The results suggest convergent evolution of polyembryony in the two species. Further work is required to demonstrate the utility of these genes (mango and citrus) in other biological systems as a tool for the clonal production of other crops.

5.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069099

ABSTRACT

Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.


Subject(s)
Garlic , Humans , Garlic/genetics , Garlic/metabolism , Domestication , Phenotype , Gene Expression Profiling , Crops, Agricultural/genetics , Reproduction/genetics
6.
Front Plant Sci ; 13: 870207, 2022.
Article in English | MEDLINE | ID: mdl-35574086

ABSTRACT

The pomegranate (Punica granatum L.) is a deciduous fruit tree that grows worldwide. However, there are variants, which stay green in mild winter conditions and are determined evergreen. The evergreen trait is of commercial and scientific importance as it extends the period of fruit production and provides opportunity to identify genetic functions that are involved in sensing environmental cues. Several different evergreen pomegranate accessions from different genetic sources grow in the Israeli pomegranate collection. The leaves of deciduous pomegranates begin to lose chlorophyll during mid of September, while evergreen accessions continue to generate new buds. When winter temperature decreases 10°C, evergreen variants cease growing, but as soon as temperatures arise budding starts, weeks before the response of the deciduous varieties. In order to understand the genetic components that control the evergreen/deciduous phenotype, several segregating populations were constructed, and high-resolution genetic maps were assembled. Analysis of three segregating populations showed that the evergreen/deciduous trait in pomegranate is controlled by one major gene that mapped to linkage group 3. Fine mapping with advanced F3 and F4 populations and data from the pomegranate genome sequences revealed that a gene encoding for a putative and unique MADS transcription factor (PgPolyQ-MADS) is responsible for the evergreen trait. Ectopic expression of PgPolyQ-MADS in Arabidopsis generated small plants and early flowering. The deduced protein of PgPolyQ-MADS includes eight glutamines (polyQ) at the N-terminus. Three-dimensional protein model suggests that the polyQ domain structure might be involved in DNA binding of PgMADS. Interestingly, all the evergreen pomegranate varieties contain a mutation within the polyQ that cause a stop codon at the N terminal. The polyQ domain of PgPolyQ-MADS resembles that of the ELF3 prion-like domain recently reported to act as a thermo-sensor in Arabidopsis, suggesting that similar function could be attributed to PgPolyQ-MADS protein in control of dormancy. The study of the evergreen trait broadens our understanding of the molecular mechanism related to response to environmental cues. This enables the development of new cultivars that are better adapted to a wide range of climatic conditions.

7.
CRISPR J ; 4(4): 583-594, 2021 08.
Article in English | MEDLINE | ID: mdl-34406049

ABSTRACT

In recent years, there has been increasing demand for red tilapia, which are commercial strains of hybrids of different tilapiine species or red variants of highly inbred Nile tilapia. However, red tilapia phenotypes are genetically unstable and affected by environmental factors, resulting in nonuniform coloration with black or dark-red color blotches that reduce their market value. Solute carrier family 45 member 2 (SLC45A2) is a membrane transporter that mediates melanin biosynthesis and is evolutionarily conserved from fish to humans. In the present study, we describe the generation of a stable and heritable red tilapia phenotype by inducing loss-of-function mutations in the slc45a2 gene. For this purpose, we identified the slc45a2 gene in Nile tilapia and designed highly specific guide RNAs (gRNA) for its genomic sequence. Multiplex microinjection of slc45a2-specific ribonucleoproteins to Nile tilapia zygotes induced up to 97-99% albinism, including loss of melanin in the eye. Next-generation sequencing of the injected zygotes demonstrated that all injected fish carried mutant alleles with variable mutagenesis efficiencies. Sanger sequencing of the genomic target region in the slc45a2 gene from fin clips, sperm, and F1 offspring of a highly mutant male identified various genomic indels and germline transmission of the sperm-identified indels. Overall, this work demonstrates the generation of somatic and germline slc45a2 mutant alleles, which leads to complete albinism in Nile tilapia.


Subject(s)
Animals, Genetically Modified , CRISPR-Cas Systems , Gene Editing , Genes, Reporter , Germ Cells/metabolism , Tilapia/genetics , Alleles , Animals , Base Sequence , Cloning, Molecular , Genome , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microinjections , Mutation , Phenotype , Phylogeny , RNA, Guide, Kinetoplastida , Sequence Analysis, DNA , Zygote
8.
Plants (Basel) ; 10(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34371575

ABSTRACT

Pollination is limiting for avocado production. We examined whether adding bumblebees (BBs; ca. 10 hives/ha) to conventional honeybees (HB; 5 hives/ha) would improve 'Hass' avocado pollination and yields. A preliminary trial (2017/18) in an avocado orchard with four consecutive rows of 'Hass' followed by one row of 'Ettinger' serving as a pollenizer (20% 'Ettinger') showed a considerable increase in 'Hass' yield in rows adjacent to (up to 80 m from) the BB hives vs. distant rows (=controls). In 2018/19, the trials were extended to three additional orchards. A significant yield increase was obtained in the BB hive-adjacent trees compared to BB hive-distant ones. Similar results were obtained in 2019/20, in experiments conducted throughout the country. The SNP analysis, to determine the parents of 'Hass' fruit at varying distances from the BB hives, showed no differences in the cross-pollination rate ('Hass' × 'Ettinger'). However, pollination rates and the number of germinating pollen grains per stigma decreased with distance from the hives, and correlated to the negative gradient in yield. Taken together, our data suggest that adding BB hives to 'Hass' avocado orchards, at ca. 10 hives/ha resulting in 0.5-1.0 BB visits/tree per min, increases pollination and, accordingly, total yield.

9.
Plant Sci ; 310: 110957, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34315583

ABSTRACT

Plant breeders and conservationist depend on knowledge about the genetic variation of their species of interest. Pisum fulvum, a wild relative of domesticated pea, has attracted attention as a genetic resource for crop improvement, yet little information about its diversity in the wild has been published hitherto. We sampled 15 populations of P. fulvum from Israeli natural habitats and conducted genotyping by sequencing to analyse their genetic diversity and adaptive state. We also attempted to evaluate the species past demography and the prospects of its future reaction to environmental changes. The results suggest that genetic diversity of P. fulvum is low to medium and is distributed between well diverged populations. Surprisingly, with 56 % in the total population the selfing rate was found to be significantly lower than expected from a species that is commonly assumed to be a predominant selfer. We found a strong genetic bottleneck during the last glacial period and only limited patterns of isolation by distance and environment, which explained 13 %-18 % of the genetic variation. Despite the weak signatures of genome-wide IBE, 1,354 markers were significantly correlated with environmental factors, 1,233 of which were located within known genes with a nonsynonymous to synonymous ratio of 0.382. Species distribution modelling depicted an ongoing fragmentation and decreased habitable area over the next 80 years under two different socio-economic pathways. Our results suggest that complex interactions of substantial drift and selection shaped the genome of P. fulvum. Climate changeis likely to cause further erosion of genetic diversity in P. fulvum. Systematic ex-situ conservation may be advisable to safeguard genetic variability for future utilization of this species.


Subject(s)
Genome, Plant/genetics , Pisum sativum/genetics , Climate Change , Genetic Variation/genetics , Genetic Variation/physiology
10.
Front Plant Sci ; 12: 642019, 2021.
Article in English | MEDLINE | ID: mdl-33719321

ABSTRACT

Anthocyanins are important dietary and health-promoting substances present in high quantities in the peel and arils of the pomegranate (Punica granatum L.) fruit. Yet, there is a high variation in the content of anthocyanin among different pomegranate varieties. The 'Black' pomegranate variety (P.G.127-28) found in Israel contains exceptionally high levels of anthocyanins in its fruit peel which can reach up to two orders of magnitude higher content as compared to that of other pomegranate varieties' peel anthocyanins. Biochemical analysis reveals that delphinidin is highly abundant in the peel of 'Black' variety. The pattern of anthocyanin accumulation in the fruit peel during fruit development of 'Black' variety differs from that of other pomegranates. High anthocyanin levels are maintained during all developmental stages. Moreover, the accumulation of anthocyanin in the fruit peel of 'Black' variety is not dependent on light. Genetic analysis of an F2 population segregating for the "black" phenotype reveals that it is determined by a single recessive gene. Genetic mapping of the F2 population using single nucleotide polymorphism (SNP) markers identified few markers tightly linked to the "black" phenotype. Recombination analysis of the F2 population and F3 populations narrowed the "black" trait to an area of 178.5 kb on the draft genome sequence of pomegranate cv. 'Dabenzi.' A putative anthocyanidin reductase (ANR) gene is located in this area. Only pomegranate varieties displaying the "black" trait carry a base pair deletion toward the end of the gene, causing a frame shift resulting in a shorter protein. We propose that this mutation in the ANR gene is responsible for the different anthocyanin composition and high anthocyanin levels of the "black" trait in pomegranate.

11.
BMC Plant Biol ; 21(1): 108, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33618672

ABSTRACT

BACKGROUND: Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. RESULTS: This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar 'Tommy Atkins'. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of 'Tommy Atkins', supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between 'Tommy Atkins' x 'Kensington Pride' was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final 'Tommy Atkins' genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the 'Tommy Atkins' x 'Kensington Pride' mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. CONCLUSIONS: The availability of the complete 'Tommy Atkins' mango genome will aid global initiatives to study mango genetics.


Subject(s)
Crops, Agricultural/growth & development , Crops, Agricultural/genetics , Fruit/growth & development , Fruit/genetics , Mangifera/growth & development , Mangifera/genetics , Taste/genetics , Genetic Variation , Genome, Plant , Genotype , Plant Breeding/methods
12.
Mol Ecol ; 29(22): 4322-4336, 2020 11.
Article in English | MEDLINE | ID: mdl-32964548

ABSTRACT

Isolation by environment (IBE) is a widespread phenomenon in nature. It is commonly expected that the degree of difference among environments is proportional to the level of divergence between populations in their respective environments. It is therefore assumed that a species' genetic diversity displays a pattern of IBE in the presence of a strong environmental cline if gene flow does not mitigate isolation. We tested this common assumption by analysing the genetic diversity and demographic history of Pisum fulvum, which inhabits contrasting habitats in the southern Levant and is expected to display only minor migration rates between populations, making it an ideal test case. Ecogeographical and subpopulation structure were analysed and compared. The correlation of genetic with environmental distances was calculated to test the effect of isolation by distance and IBE and detect the main drivers of these effects. Historical effective population size was estimated using stairway plot. Limited overlap of ecogeographical and genetic clustering was observed, and correlation between genetic and environmental distances was statistically significant but small. We detected a sharp decline of effective population size during the last glacial period. The low degree of IBE may be the result of genetic drift due to a past bottleneck. Our findings contradict the expectation that strong environmental clines cause IBE in the absence of extensive gene flow.


Subject(s)
Genetic Variation , Pisum sativum , Environment , Gene Flow , Genetic Drift , Genetics, Population
13.
Plant Sci ; 298: 110566, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32771167

ABSTRACT

Pisum fulvum is an annual legume native to Syria, Lebanon, Israel and Jordan. In certain locations, P. fulvum individuals were documented to display a reproductive dimorphism - amphicarpy, with both above and below ground flowers and pods. Herein we aimed to study the possible role of soil texture on amphicarpy in P. fulvum, to investigate the possible bio-climatic associations of P. fulvum amphicarpy and to identify genetic markers associated with this phenotype. A set of 127 germplasm accessions sampled across the Israeli distribution range of the species was phenotyped in two common garden nurseries. Land use and bioclimatic data were used to delineate the eco-geographic clustering of accession's sampling sites. Single nucleotide polymorphism (SNP) markers were employed in genome-wide association study to identify associated loci. Amphicarpy was subject to strong experimental site x genotype interaction with higher phenotypic expression in fine textured soil relative to sandy loam. Amphicarpy was more prevalent among accessions sampled in eastern Judea and Samaria and was weakly associated with early phenology and relatively modest above ground biomass production. Twelve SNP markers were significantly associated with amphicarpy, each explaining between 8 and 12 % of the phenotypic variation. In P. fulvum amphicarpy seems to be a polygenetic trait controlled by an array of genes that is likely to be affected by environmental stimuli. The probable selective advantage of the association between amphicarpy and early flowering is in line with its relative prevalence in drought prone territories subject to heavy grazing.


Subject(s)
Climate , Gene-Environment Interaction , Pisum sativum/physiology , Polymorphism, Single Nucleotide , Reproduction/physiology , Soil/chemistry , Genetic Markers , Genome-Wide Association Study , Phenotype , Reproduction/genetics
14.
BMC Genomics ; 20(1): 379, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31092188

ABSTRACT

BACKGROUND: Discovering a genome-wide set of avocado (Persea americana Mill.) single nucleotide polymorphisms and characterizing the diversity of germplasm collection is a powerful tool for breeding. However, discovery is a costly process, due to loss of loci that are proven to be non-informative when genotyping the germplasm. RESULTS: Our study on a collection of 100 accessions comprised the three race types, Guatemalan, Mexican, and West Indian. To increase the chances of discovering polymorphic loci, three pools of genomic DNA, one from each race, were sequenced and the reads were aligned to a reference transcriptome. In total, 507,917 polymorphic loci were identified in the entire collection. Of these, 345,617 were observed in all three pools, 117,692 in two pools, 44,552 in one of the pools, and only 56 (0.0001%) were homozygous in the three pools but for different alleles. The polymorphic loci were validated using 192 randomly selected SNPs by genotyping the accessions within each pool. The sensitivity of polymorphic locus prediction ranged from 0.77 to 0.94. The correlation between the allele frequency estimated from the pooled sequences and actual allele frequency from genotype calling of individual accessions was r = 0.8. A subset of 109 SNPs were then used to evaluate the genetic relationships among avocado accessions and the genetic diversity of the collection. The three races were distinctly clustered by projecting the genetic variation on a PCA plot. As expected, by estimating the kinship coefficient for all the accessions, many of the cultivars from the California breeding program were closely related to each other, especially, the Hass-like ones. The green-skin avocados, e.g., 'Bacon', 'Zutano', 'Ettinger' and 'Fuerte' were also closely related to each other. CONCLUSIONS: A framework for SNP discovery and genetically characterizing of a breeder's accessions was described. Sequencing pools of gDNA is a cost-effective approach to create a genome-wide stock of polymorphic loci for a breeding program. Reassessing the botanical and the genetic knowledge about the germplasm accessions is valuable for future breeding. Kinship analysis may be used as a first step in finding a parental candidates in a parentage analyses.


Subject(s)
Genetics, Population , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Persea/classification , Persea/genetics , Polymorphism, Single Nucleotide , Seeds/genetics , DNA, Plant/genetics
15.
Planta ; 246(4): 641-658, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28623561

ABSTRACT

MAIN CONCLUSION: Morphological, QTL, and gene expression analyses indicate variation in cucumber fruit size and shape results from orientation, timing, and extent of cell division and expansion, and suggest candidate gene factors. Variation in cucumber (Cucumis sativus L.) fruit size and shape is highly quantitative, implicating interplay of multiple components. Recent studies have identified numerous fruit size and shape quantitative trait loci (QTL); however, underlying factors remain to be determined. We examined ovary and fruit development of two sequenced cucumber genotypes with extreme differences in fruit size and shape, Chinese Long '9930' (CL9930), and pickling type 'Gy14'. Differences were observed in several independent factors that can influence size and shape: ovule number, rate and period of cell division in longitudinal and cross section in ovaries and fruit, timing and rate of fruit expansion in length and diameter, and cell shape. Level and timing of expression of select fruit growth stage marker genes and candidate fruit size gene homologs associated with cucumber fruit size and shape QTL were examined from 5-day pre-anthesis to 20-day post-pollination. Our results indicate that variation in fruit size and shape results from differences in cell number and shape in longitudinal and cross section, driven in turn by differences in orientation, timing, and duration of cell division and expansion, both pre- and post-anthesis, and suggest candidate genes contributing to determination of cucumber fruit size and shape.


Subject(s)
Cucumis sativus/growth & development , Fruit/growth & development , Quantitative Trait Loci/genetics , Anatomic Variation , Cell Division , Cell Shape , Cucumis sativus/cytology , Cucumis sativus/genetics , Cucumis sativus/physiology , Flowers/cytology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Fruit/cytology , Fruit/genetics , Fruit/physiology , Genetic Markers/genetics , Genotype , Phenotype , Pollination
16.
Front Plant Sci ; 8: 577, 2017.
Article in English | MEDLINE | ID: mdl-28473837

ABSTRACT

Mango (Mangifera indica) is an economically and nutritionally important tropical/subtropical tree fruit crop. Most of the current commercial cultivars are selections rather than the products of breeding programs. To improve the efficiency of mango breeding, molecular markers have been used to create a consensus genetic map that identifies all 20 linkage groups in seven mapping populations. Polyembryony is an important mango trait, used for clonal propagation of cultivars and rootstocks. In polyembryonic mango cultivars, in addition to a zygotic embryo, several apomictic embryos develop from maternal tissue surrounding the fertilized egg cell. This trait has been associated with linkage group 8 in our consensus genetic map and has been validated in two of the seven mapping populations. In addition, we have observed a significant association between trait and single nucleotide polymorphism (SNP) markers for the vegetative trait of branch habit and the fruit traits of bloom, ground skin color, blush intensity, beak shape, and pulp color.

17.
BMC Genomics ; 17: 330, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27146851

ABSTRACT

BACKGROUND: Penicillium expansum is a destructive phytopathogen that causes decay in deciduous fruits during postharvest handling and storage. During colonization the fungus secretes D-gluconic acid (GLA), which modulates environmental pH and regulates mycotoxin accumulation in colonized tissue. Till now no transcriptomic analysis has addressed the specific contribution of the pathogen's pH regulation to the P. expansum colonization process. For this purpose total RNA from the leading edge of P. expansum-colonized apple tissue of cv. 'Golden Delicious' and from fungal cultures grown under pH 4 or 7 were sequenced and their gene expression patterns were compared. RESULTS: We present a large-scale analysis of the transcriptome data of P. expansum and apple response to fungal colonization. The fungal analysis revealed nine different clusters of gene expression patterns that were divided among three major groups in which the colonized tissue showed, respectively: (i) differing transcript expression patterns between mycelial growth at pH 4 and pH 7; (ii) similar transcript expression patterns of mycelial growth at pH 4; and (iii) similar transcript expression patterns of mycelial growth at pH 7. Each group was functionally characterized in order to decipher genes that are important for pH regulation and also for colonization of apple fruits by Penicillium. Furthermore, comparison of gene expression of healthy apple tissue with that of colonized tissue showed that differentially expressed genes revealed up-regulation of the jasmonic acid and mevalonate pathways, and also down-regulation of the glycogen and starch biosynthesis pathways. CONCLUSIONS: Overall, we identified important genes and functionalities of P. expansum that were controlled by the environmental pH. Differential expression patterns of genes belonging to the same gene family suggest that genes were selectively activated according to their optimal environmental conditions (pH, in vitro or in vivo) to enable the fungus to cope with varying conditions and to make optimal use of available enzymes. Comparison between the activation of the colonized host's gene responses by alkalizing Colletotrichum gloeosporioides and acidifying P. expansum pathogens indicated similar gene response patterns, but stronger responses to P. expansum, suggesting the importance of acidification by P. expansum as a factor in its increased aggressiveness.


Subject(s)
Fungal Proteins/genetics , Gene Expression Profiling/methods , Malus/microbiology , Penicillium/growth & development , Plant Proteins/genetics , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Hydrogen-Ion Concentration , Malus/genetics , Multigene Family , Penicillium/genetics , Principal Component Analysis , Sequence Analysis, RNA
18.
Mol Plant Pathol ; 17(7): 1140-53, 2016 09.
Article in English | MEDLINE | ID: mdl-26808139

ABSTRACT

Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N' and C' termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off-target sites. Non-transgenic heterozygous eif4e mutant plants were selected for the production of non-transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus-W. In contrast, heterozygous mutant and non-mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.


Subject(s)
CRISPR-Cas Systems/genetics , Cucumis sativus/genetics , Cucumis sativus/virology , Disease Resistance/genetics , Plant Diseases/virology , Base Sequence , Chromosome Segregation/genetics , Eukaryotic Initiation Factor-4E/genetics , Gene Editing , Genotype , Homozygote , Mutation/genetics , Plant Viruses/physiology , Plants, Genetically Modified
19.
Mol Plant Pathol ; 17(5): 727-40, 2016 06.
Article in English | MEDLINE | ID: mdl-26420024

ABSTRACT

Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin.


Subject(s)
Ammonia/pharmacology , Fungal Proteins/metabolism , Malus/metabolism , Malus/microbiology , Patulin/metabolism , Penicillium/physiology , Culture Media , Electrophoretic Mobility Shift Assay , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/drug effects , Genes, Fungal , Gluconates/metabolism , Hydrogen-Ion Concentration , Malus/drug effects , Patulin/biosynthesis , Penicillium/drug effects , Penicillium/genetics , Penicillium/growth & development , Sucrose/pharmacology
20.
BMC Plant Biol ; 15: 277, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26573148

ABSTRACT

BACKGROUND: Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. RESULTS: We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. CONCLUSIONS: Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and strengthen the history of mango diversity.


Subject(s)
Gene Expression Regulation, Plant , Mangifera/genetics , Microsatellite Repeats , Polymorphism, Single Nucleotide , Germ Cells, Plant/metabolism , Israel , Mangifera/metabolism , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...