Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(35): 23454-23466, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37609874

ABSTRACT

The combination of fluorine labeling and pulsed electron-nuclear double resonance (ENDOR) is emerging as a powerful technique for obtaining structural information about proteins and nucleic acids. In this work, we explored the capability of Mims 19F ENDOR experiments on reporting intermolecular distances in trityl- and 19F-labeled DNA duplexes at three electron paramagnetic resonance (EPR) frequencies (34, 94, and 263 GHz). For spin labeling, we used the hydrophobic Finland trityl radical and hydrophilic OX063 trityl radical. Fluorine labels were introduced into two positions of a DNA oligonucleotide. The results indicated that hyperfine splittings visible in the ENDOR spectra are consistent with the most populated interspin distances between 19F and the trityl radical predicted from molecular dynamic (MD) simulations. Moreover, for some cases, ENDOR spectral simulations based on MD results were able to reproduce the conformational distribution reflected in the experimental ENDOR line broadening. Additionally, MD simulations provided more detailed information about the melting of terminal base pairs of the oligonucleotides and about the configuration of the trityls relative to a DNA end.


Subject(s)
Fluorine , Nucleic Acids , Electron Spin Resonance Spectroscopy , Spin Labels , DNA , Oligonucleotides
2.
Phys Chem Chem Phys ; 24(10): 5982-6001, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35199805

ABSTRACT

Recently, Marina Bennati and coworkers (M. Bennati et al., Angew. Chem., Int. Ed., 2020, 59, 373-379., M. Bennati et al., J. Magn. Reson., 2021, 333, 107091) proposed to use electron nuclear double resonance (ENDOR) spectroscopy in the W-band for a pair of labels, nitroxide and 19F, for measurements of short (0.5-1.0 nm) distances in biomolecules. In our paper, we investigated the suitability of high-field ENDOR spectroscopy in the W-band for pairs of triarylmethyl and fluorine labels using five newly synthesized model compounds. It is shown that the application of strong magnetic fields allows distinguishing nuclear frequencies of 19F and protons with sufficient resolution. On the one hand, in contrast to nitroxides, for triarylmethyl radicals, it is not necessary to obtain spectra in different orientations owing to low g-factor anisotropic and long electron spin relaxation times of triarylmethyls. On the other hand, the size of the triarylmethyl radical is substantially larger than that of nitroxide and comparable with measured distances. We theoretically analyzed the suitability of the dipole-dipole approach for triarylmethyl to be used in a 19F ENDOR experiment and determined limitations of this approach. Finally, for comparison, we performed paramagnetic relaxation enhancement (PRE) NMR on the same compounds. In addition, we applied this approach to study the process of a thiol exchange between molecules of triarylmethyl-labeled and 19F-labeled human serum albumin (HSA).


Subject(s)
Electrons , Fluorine , Electron Spin Resonance Spectroscopy/methods , Humans , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...