Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(3): 113834, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431842

ABSTRACT

Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.


Subject(s)
Autoreceptors , Dopamine , Mice , Animals , gamma-Aminobutyric Acid/pharmacology , Axons/metabolism , Corpus Striatum/metabolism , Receptors, GABA-A/metabolism , Mice, Knockout , Homeostasis
2.
Synapse ; 75(7): e22197, 2021 07.
Article in English | MEDLINE | ID: mdl-33619810

ABSTRACT

Severe voluntary food restriction is the defining symptom of anorexia nervosa (AN), but anxiety and excessive exercise are maladaptive symptoms that contribute significantly to the severity of AN and which individuals with AN have difficulty suppressing. We hypothesized that the excitability of hippocampal pyramidal neurons, known to contribute to anxiety, leads to the maladaptive behavior of excessive exercise. Conversely, since glutamate transporter GLT-1 dampens the excitability of hippocampal pyramidal neurons through the uptake of ambient glutamate and suppression of the GluN2B-subunit containing NMDA receptors (GluN2B-NMDARs), GLT-1 may contribute toward dampening excessive exercise. This hypothesis was tested using the mouse model of AN, called activity-based anorexia (ABA), whereby food restriction evokes the maladaptive behavior of excessive wheel running (food restriction-evoked running, FRER). We tested whether individual differences in ABA vulnerability of mice, quantified based on FRER, correlated with individual differences in the levels of GLT-1 at excitatory synapses of the hippocampus. Electron microscopic immunocytochemistry (EM-ICC) was used to quantify GLT-1 levels at the excitatory synapses of the hippocampus. The FRER seen in individual mice varied more than 10-fold, and Pearson correlation analyses revealed a strong negative correlation (p = .02) between FRER and GLT-1 levels at the axon terminals of excitatory synapses and at the surrounding astrocytic plasma membranes. Moreover, synaptic levels of GluN2B-NMDARs correlated strongly with GLT-1 levels at perisynaptic astrocytic plasma membranes. There is at present no accepted pharmacotherapy for AN, and little is known about the etiology of this deadly illness. Current findings suggest that drugs increasing GLT-1 expression may reduce AN severity through the reduction of GluN2B-NMDAR activity.


Subject(s)
Anorexia , Motor Activity , Animals , Anorexia/etiology , Anorexia/metabolism , Disease Models, Animal , Glutamates/metabolism , Hippocampus/metabolism , Mice , Motor Activity/physiology , Synapses/metabolism
3.
Neurochem Res ; 45(1): 53-67, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31175541

ABSTRACT

Brain white matter is the means of efficient signal propagation in brain and its dysfunction is associated with many neurological disorders. We studied the effect of hyaluronan deficiency on the integrity of myelin in murine corpus callosum. Conditional knockout mice lacking the hyaluronan synthase 2 were compared with control mice. Ultrastructural analysis by electron microscopy revealed a higher proportion of myelin lamellae intruding into axons of knockout mice, along with significantly slimmer axons (excluding myelin sheath thickness), lower g-ratios, and frequent loosening of the myelin wrappings, even though the myelin thickness was similar across the genotypes. Analysis of extracellular diffusion of a small marker molecule tetramethylammonium (74 MW) in brain slices prepared from corpus callosum showed that the extracellular space volume increased significantly in the knockout animals. Despite this vastly enlarged volume, extracellular diffusion rates were significantly reduced, indicating that the compromised myelin wrappings expose more complex geometric structure than the healthy ones. This finding was confirmed in vivo by diffusion-weighted magnetic resonance imaging. Magnetic resonance spectroscopy suggested that water was released from within the myelin sheaths. Our results indicate that hyaluronan is essential for the correct formation of tight myelin wrappings around the axons in white matter.


Subject(s)
Brain/metabolism , Brain/ultrastructure , Hyaluronic Acid/deficiency , White Matter/metabolism , White Matter/ultrastructure , Animals , Brain/pathology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , White Matter/pathology
4.
Adv Exp Med Biol ; 1006: 119-139, 2017.
Article in English | MEDLINE | ID: mdl-28865018

ABSTRACT

Mature excitatory synapses are composed of more than 1500 proteins postsynaptically and hundreds more that operate presynaptically. Among them, drebrin is an F-actin-binding protein that increases noticeably during juvenile synaptogenesis. Electron microscopic analysis reveals that drebrin is highly enriched specifically on the postsynaptic side of excitatory synapses. Since dendritic spines are structures specialized for excitatory synaptic transmission, the function of drebrin was probed by analyzing the ultrastructural characteristics of dendritic spines of animals with genetic deletion of drebrin A (DAKO), the adult isoform of drebrin. Electron microscopic analyses revealed that these brains are surprisingly intact, in that axo-spinous synaptic junctions are well-formed and not significantly altered in number. This normal ultrastructure may be because drebrin E, the alternate embryonic isoform, compensates for the genetic deletion of drebrin A. However, DAKO results in the loss of homeostatic plasticity of N-methyl-D-aspartate receptors (NMDARs). The NMDAR activation-dependent trafficking of the NR2A subunit-containing NMDARs from dendritic shafts into spine head cytoplasm is greatly diminished within brains of DAKO. Conversely, within brains of wild-type rodents, spines respond to NMDAR blockade with influx of F-actin, drebrin A, and NR2A subunits of NMDARs. These observations indicate that drebrin A facilitates the trafficking of NMDAR cargos in an F-actin-dependent manner to mediate homeostatic plasticity. Analysis of the brains of transgenic mice used as models of Alzheimer's disease (AD) reveals that the loss of drebrin from dendritic spines predates the emergence of synaptic dysfunction and cognitive impairment, suggesting that this form of homeostatic plasticity contributes toward cognition. Two studies suggest that the nature of drebrin's interaction with NMDARs is dependent on the receptor's subunit composition. Drebrin A can be found co-clustering with NR2B-containing NMDARs at the plasma membrane, while NR2A-containing NMDARs co-traffic into the spine cytoplasm but do not co-cluster at the plasma membrane. Most recently, we encountered a physiological condition that supports this idea. When adolescent female rats are reared under a condition of restricted food access and ad libitum wheel access, they paradoxically become excessive runners, choosing to run, even during the limited hours of food availability. This behavioral pattern is termed activity-based anorexia (ABA) and has served as an animal model for anorexia nervosa. Those animals that exhibit the greatest ABA vulnerability, in that they lose the most amount of body weight and run with greatest exuberance to the point of risking their lives, exhibit the highest levels of NR2B-NMDARs and drebrin at the postsynaptic membrane of hippocampal pyramidal neurons. Those animals that exhibit the greatest resilience to ABA, in that they run minimally under such condition, thereby losing minimal amount of weight, exhibit the highest level of NR2A-NMDARs in the spine cytoplasm and lowest levels of drebrin at the postsynaptic membrane. This pattern suggests that drebrin has dual roles: retention of NR2A-NMDARs in the reserve pool and trafficking of NR2B-NMDARs to the postsynaptic membrane, ultimately contributing to an individual's reactivity to stress. Altogether, these observations indicate that drebrin is a protein that is important for synaptic plasticity and deserves the attention of neuroscientists studying the neurobiological basis of cognition and stress reactivity.


Subject(s)
Alzheimer Disease/genetics , Neuropeptides/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Actins/metabolism , Alzheimer Disease/pathology , Animals , Cerebral Cortex/metabolism , Dendrites/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neuronal Plasticity/genetics , Neuropeptides/metabolism , Rats , Sequence Deletion/genetics , Synapses/genetics , Synapses/metabolism , Synapses/ultrastructure
5.
Exp Neurol ; 273: 105-13, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26257025

ABSTRACT

Disturbance of calcium homeostasis is implicated in the normal process of aging and brain pathology prevalent in the elderly such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Previous studies demonstrated that applying a hyponatremic iso-osmotic (low-NaCl) artificial cerebrospinal fluid (ACSF) to rodent hippocampus causes extracellular calcium to rapidly decrease. Restoring normonatremia after low-NaCl treatment causes a rapid increase in extracellular calcium that overshoots baseline. This study examined the amplitude, timing, and mechanism of these surprising calcium changes. We also tested whether hyponatremia increased calcium entry into brain cells or calcium binding to chondroitin sulfate (CS), a negatively charged constituent of the extracellular matrix (ECM) that may be occupied by sodium during normonatremia. We report three major findings. First we show that CS does not contribute to extracellular calcium changes during low-NaCl treatments. Second, we show that the time to minimum extracellular calcium during low-NaCl treatment is significantly shorter than the time to maximum extracellular calcium in recovery from low-NaCl treatment. Third, we show that the decrease in extracellular calcium observed during hyponatremia is attenuated by ML 218, a highly selective T-type calcium channel blocker. Together these data suggest that calcium rapidly enters cells at the onset of low-NaCl treatment and is extruded from cells when normonatremia is restored. Calcium binding to CS does not significantly contribute to calcium changes in brain during hyponatremia. Differences in timing suggest that extracellular calcium changes during and in recovery from hyponatremia occur by distinct mechanisms or by a multistep process. Finally, partial block of extracellular calcium influx by ML 218 suggests that T-type channels are involved in calcium entering cells during hyponatremia. Given the high prevalence of hyponatremia among elderly patients and the growing understanding of calcium's role in multiple neurologic pathologies, this study promotes a novel approach for studying and potentially preventing the effects of hyponatremia on calcium dysregulation in brain tissue.


Subject(s)
Brain/metabolism , Calcium Channels, T-Type/metabolism , Calcium/metabolism , Hyponatremia/pathology , Analysis of Variance , Animals , Brain/drug effects , Calcium Channel Blockers/pharmacology , Chondroitin ABC Lyase/pharmacology , Disease Models, Animal , Extracellular Space/metabolism , In Vitro Techniques , Ion-Selective Electrodes , Mice , Mice, Inbred C57BL , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...