Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 29(Pt 5): 1141-1151, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36073872

ABSTRACT

Serial synchrotron crystallography enables the study of protein structures under physiological temperature and reduced radiation damage by collection of data from thousands of crystals. The Structural Biology Center at Sector 19 of the Advanced Photon Source has implemented a fixed-target approach with a new 3D-printed mesh-holder optimized for sample handling. The holder immobilizes a crystal suspension or droplet emulsion on a nylon mesh, trapping and sealing a near-monolayer of crystals in its mother liquor between two thin Mylar films. Data can be rapidly collected in scan mode and analyzed in near real-time using piezoelectric linear stages assembled in an XYZ arrangement, controlled with a graphical user interface and analyzed using a high-performance computing pipeline. Here, the system was applied to two ß-lactamases: a class D serine ß-lactamase from Chitinophaga pinensis DSM 2588 and L1 metallo-ß-lactamase from Stenotrophomonas maltophilia K279a.


Subject(s)
Stenotrophomonas maltophilia , Biology , Crystallography , Proteins
2.
IUCrJ ; 9(Pt 5): 610-624, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36071813

ABSTRACT

Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.

3.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 997-1009, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35916224

ABSTRACT

Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.


Subject(s)
Microfluidics , Proteins , Crystallization , Crystallography, X-Ray , Data Collection , Emulsions , Humans
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-33972410

ABSTRACT

The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.


Subject(s)
RNA Caps/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , SARS-CoV-2/chemistry , Crystallography , Methylation , Methyltransferases/chemistry , Methyltransferases/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , RNA Cap Analogs/chemistry , RNA Cap Analogs/metabolism , RNA Caps/chemistry , RNA, Messenger/chemistry , RNA, Viral/chemistry , S-Adenosylhomocysteine/chemistry , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Synchrotrons , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism
5.
J Vis Exp ; (168)2021 02 26.
Article in English | MEDLINE | ID: mdl-33720136

ABSTRACT

Serial data collection is a relatively new technique for synchrotron users. A user manual for fixed target data collection at I24, Diamond Light Source is presented with detailed step-by-step instructions, figures, and videos for smooth data collection.


Subject(s)
Data Collection , Diamond/chemistry , Crystallography, X-Ray , Data Analysis , Light , Synchrotrons , User-Computer Interface
6.
J Synchrotron Radiat ; 27(Pt 2): 360-370, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32153274

ABSTRACT

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.

7.
IUCrJ ; 6(Pt 6): 1074-1085, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31709063

ABSTRACT

High-throughput X-ray crystal structures of protein-ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein-ligand complexes using SFX.

8.
IUCrJ ; 6(Pt 4): 543-551, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31316799

ABSTRACT

An approach is demonstrated to obtain, in a sample- and time-efficient manner, multiple dose-resolved crystal structures from room-temperature protein microcrystals using identical fixed-target supports at both synchrotrons and X-ray free-electron lasers (XFELs). This approach allows direct comparison of dose-resolved serial synchrotron and damage-free XFEL serial femtosecond crystallography structures of radiation-sensitive proteins. Specifically, serial synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced changes occur at far lower doses than those at which diffraction quality is compromised (the Garman limit), consistent with previous studies on the reduction of heme proteins by low X-ray doses. In these structures, a functionally relevant bond length is shown to vary rapidly as a function of absorbed dose, with all room-temperature synchrotron structures exhibiting linear deformation of the active site compared with the XFEL structure. It is demonstrated that extrapolation of dose-dependent synchrotron structures to zero dose can closely approximate the damage-free XFEL structure. This approach is widely applicable to any protein where the crystal structure is altered by the synchrotron X-ray beam and provides a solution to the urgent requirement to determine intact structures of such proteins in a high-throughput and accessible manner.

9.
Acta Crystallogr D Struct Biol ; 75(Pt 2): 151-159, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30821704

ABSTRACT

The ability to determine high-quality, artefact-free structures is a challenge in micro-crystallography, and the rapid onset of radiation damage and requirement for a high-brilliance X-ray beam mean that a multi-crystal approach is essential. However, the combination of crystal-to-crystal variation and X-ray-induced changes can make the formation of a final complete data set challenging; this is particularly true in the case of metalloproteins, where X-ray-induced changes occur rapidly and at the active site. An approach is described that allows the resolution, separation and structure determination of crystal polymorphs, and the tracking of radiation damage in microcrystals. Within the microcrystal population of copper nitrite reductase, two polymorphs with different unit-cell sizes were successfully separated to determine two independent structures, and an X-ray-driven change between these polymorphs was followed. This was achieved through the determination of multiple serial structures from microcrystals using a high-throughput high-speed fixed-target approach coupled with robust data processing.


Subject(s)
Achromobacter cycloclastes/enzymology , Crystallography, X-Ray/instrumentation , Nitrite Reductases/chemistry , Synchrotrons/instrumentation , Achromobacter cycloclastes/chemistry , Animals , Crystallization/instrumentation , Crystallization/methods , Crystallography, X-Ray/methods , Data Collection/instrumentation , Data Collection/methods , Equipment Design , Humans , Metalloproteins/chemistry , Protein Conformation/radiation effects
10.
Acta Crystallogr D Struct Biol ; 74(Pt 10): 1000-1007, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30289410

ABSTRACT

Crystallography chips are fixed-target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor-microfabrication techniques to yield an array of wells or through-holes in which single microcrystals can be lodged for raster-scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high-throughput sample presentation for serial diffraction data collection at synchrotron or X-ray free-electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip-less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet-on-sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre-sized crystals at an XFEL. The approach is also well suited to time-resolved pump-probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X-ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.


Subject(s)
Crystallography/instrumentation , Data Collection , Equipment Design , Microarray Analysis/methods , Animals , Carbon Monoxide/chemistry , Chick Embryo , Crystallography/methods , Crystallography, X-Ray/instrumentation , Crystallography, X-Ray/methods , Hemoglobin A/chemistry , Humans , Muramidase/chemistry , Oxyhemoglobins/chemistry , Polymers , Time Factors
11.
Acta Crystallogr D Struct Biol ; 73(Pt 4): 373-378, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28375148

ABSTRACT

The development of serial crystallography has been driven by the sample requirements imposed by X-ray free-electron lasers. Serial techniques are now being exploited at synchrotrons. Using a fixed-target approach to high-throughput serial sampling, it is demonstrated that high-quality data can be collected from myoglobin crystals, allowing room-temperature, low-dose structure determination. The combination of fixed-target arrays and a fast, accurate translation system allows high-throughput serial data collection at high hit rates and with low sample consumption.


Subject(s)
Crystallography, X-Ray/instrumentation , Myoglobin/chemistry , Animals , Crystallization/instrumentation , Equipment Design , Lab-On-A-Chip Devices , Models, Molecular , Sperm Whale , Synchrotrons
12.
Acta Crystallogr D Struct Biol ; 72(Pt 8): 944-55, 2016 08.
Article in English | MEDLINE | ID: mdl-27487825

ABSTRACT

The advent of ultrafast highly brilliant coherent X-ray free-electron laser sources has driven the development of novel structure-determination approaches for proteins, and promises visualization of protein dynamics on sub-picosecond timescales with full atomic resolution. Significant efforts are being applied to the development of sample-delivery systems that allow these unique sources to be most efficiently exploited for high-throughput serial femtosecond crystallography. Here, the next iteration of a fixed-target crystallography chip designed for rapid and reliable delivery of up to 11 259 protein crystals with high spatial precision is presented. An experimental scheme for predetermining the positions of crystals in the chip by means of in situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure, giving a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage and allowing the method to be applied to systems where the number of crystals is limited.


Subject(s)
Crystallization/methods , Crystallography, X-Ray/methods , Proteins/chemistry , Animals , Crystallization/economics , Crystallization/instrumentation , Crystallography, X-Ray/economics , Crystallography, X-Ray/instrumentation , Equipment Design , Myoglobin/chemistry , Sperm Whale , Temperature , Time Factors
13.
Acta Crystallogr D Struct Biol ; 72(Pt 3): 388-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26960125

ABSTRACT

During, or even after, data collection the presence and effects of radiation damage in macromolecular crystallography may not always be immediately obvious. Despite this, radiation damage is almost always present, with site-specific damage occurring on very short time (dose) scales well before global damage becomes apparent. A result of both site-specific radiation damage and derivatization is a change in the relative intensity of reflections. The size and approximate rate of onset of X-ray-induced transformations is compared with the changes expected from derivatization, and strategies for minimizing radiation damage are discussed.


Subject(s)
Crystallography, X-Ray/methods , Receptors, IgG/chemistry , Animals , Dose-Response Relationship, Radiation , Humans , Macromolecular Substances/chemistry , Models, Molecular , Protein Conformation/radiation effects , X-Rays
14.
J Synchrotron Radiat ; 22(6): 1372-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26524301

ABSTRACT

The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. The setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.

15.
J Inorg Biochem ; 105(3): 375-81, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21421124

ABSTRACT

Hepatocyte cytosol contains a multitude of proteins, but also comparatively high concentrations of l-glutathione (GSH, ~5.0 mM) and L-cysteine (Cys, ~0.5 mM). Since Hg(2+), CH(3)Hg(+) and Cd(2+) have a high affinity for thiols, their coordination to these thiols is likely involved in their intracellular transport. The comparative coordination behavior of these metal species towards mixtures of Cys and GSH, however, has not been studied under near physiological conditions. To probe these toxicologically relevant interactions, each metal species was separately injected onto a C(18)-HPLC column (37°C) that had been equilibrated with phosphate buffered saline (PBS) that contained 5.0 mM GSH (mobile phase) and detected with an inductively coupled plasma atomic emission spectrometer. The incremental increase of the Cys concentration in the mobile phase (in 0.5 or 1.0 mM steps) up to 10mM followed by the chromatography of each metal species decreased the retention of Hg(2+) and CH(3)Hg(+) albeit in a different manner. This behavior was rationalized in terms of the replacement of hydrophobic GS-moieties coordinated to each mercurial by less hydrophobic Cys-moieties. In contrast, a Cd-peak eluted close to the void volume with all investigated mobile phases. Using X-ray absorption spectroscopy, the Cd-compound that eluted with a PBS-buffer that contained 5.0 mM GSH was structurally characterized as tetrahedral (GS)(4)Cd. Thus, the in vivo formation of (GS)(4)Cd must be considered and HPLC-ICP-AES is identified as a useful tool to probe dynamic bioinorganic processes which involve the interaction of a metal ion with multiple ligands under physiologically relevant conditions.


Subject(s)
Cadmium/chemistry , Chromatography, High Pressure Liquid/methods , Mercury/chemistry , Methylmercury Compounds/chemistry , Spectrophotometry, Atomic/methods , Sulfhydryl Compounds/analysis , X-Ray Absorption Spectroscopy/methods , Cations, Divalent/chemistry , Cysteine/analysis , Cysteine/chemistry , Glutathione/analysis , Glutathione/chemistry , Glutathione Disulfide/analysis , Hydrophobic and Hydrophilic Interactions , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...