Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(16): 163601, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075024

ABSTRACT

Fluctuations are a key property of both classical and quantum systems. While the fluctuations are well understood for many quantum systems at zero temperature, the case of an interacting quantum system at finite temperature still poses numerous challenges. Despite intense theoretical investigations of atom number fluctuations in Bose-Einstein condensates, their amplitude in experimentally relevant interacting systems is still not fully understood. Moreover, technical limitations have prevented their experimental investigation to date. Here we report the observation of these fluctuations. Our experiments are based on a stabilization technique, which allows for the preparation of ultracold thermal clouds at the shot noise level, thereby eliminating numerous technical noise sources. Furthermore, we make use of the correlations established by the evaporative cooling process to precisely determine the fluctuations and the sample temperature. This allows us to observe a telltale signature: the sudden increase in fluctuations of the condensate atom number close to the critical temperature.

2.
Phys Rev Lett ; 117(16): 163201, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27792375

ABSTRACT

Ultracold atomic gases have recently become a driving force in few-body physics due to the observation of the Efimov effect. While initially observed in equal mass systems, one expects even richer few-body physics in the heteronuclear case. In previous experiments with ultracold mixtures of potassium and rubidium, an unexpected nonuniversal behavior of Efimov resonances was observed. In contrast, we measure the scattering length dependent three-body recombination coefficient in ultracold heteronuclear mixtures of ^{39}K-^{87}Rb and ^{41}K-^{87}Rb and do not observe any signatures of Efimov resonances for accessible scattering lengths in either mixture. Our results show good agreement with our theoretical model for the scattering dependent three-body recombination coefficient and reestablish universality across isotopic mixtures.

3.
Phys Rev Lett ; 117(7): 073604, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563964

ABSTRACT

We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN

4.
Phys Rev Lett ; 101(7): 073601, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18764532

ABSTRACT

We demonstrate spin squeezing in a room temperature ensemble of approximately 10(12) cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via interatom entanglement. Squeezing of the collective spin is verified by quantum state tomography.

5.
Philos Trans A Math Phys Eng Sci ; 361(1808): 1391-9, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12869315

ABSTRACT

Atomic ensembles containing a large number of atoms have been proved to be an effective medium for quantum-state (quantum information) engineering and processing via their coupling with multi-photon light pulses. The general mechanism of this coupling, which involves continuous quantum variables for light and atoms, is described. The efficient quantum interface between light and atoms has led to the recent demonstration of an entangled state of two macroscopic atomic objects, more precisely two caesium gas samples. Based on this result, a proposal for teleportation of an entangled state of two atomic samples (entanglement swapping) is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...