Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Diagn Microbiol Infect Dis ; 48(1): 5-15, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14761716

ABSTRACT

Yokenella regensburgei is an opportunistic human pathogen that phenotypically resembles Hafnia alvei. The susceptibility of 10 Y. regensburgei strains to 75 antimicrobial agents was examined, applying a microdilution procedure in cation-adjusted Mueller-Hinton broth (CAMHB) and IsoSensitest broth (ISB). beta-Lactamases were characterized phenotypically with beta-lactamase activity and induction assays. Genotypically, PCR experiments applying degenerated primer pairs for the detection of AmpC beta-lactamase genes were performed. Examining the phenotypic properties of Yokenella and 76 H. alvei strains with commercial identification systems and conventional tests, a database for an accurate biochemical separation of Y. regensburgei from H. alvei was established. In CAMHB, all tested yokenellae were resistant or at least of intermediate susceptibility to penicillin G, oxacillin, amoxicillin, amoxicillin-clavulanate, cefaclor, cefazoline, loracarbef, cefoxitin, all tested macrolides, lincosamides, streptogramins, ketolides, fusidic acid, glycopeptides, linezolid, and rifampicin. All Yokenella strains were sensitive to several beta-lactams, all tested aminoglycosides, chloramphenicol, folate-pathway inhibitors, fosfomycin, nitrofurantion, quinolones, and tetracyclines. In ISB, the minimum inhibitory concentration (MIC) values of several beta-lactams were one to four MIC doubling dilution steps lower than those found in CAMHB (depending on the beta-lactam). All yokenellae yielded specific amplification products for ampC, and all of these strains expressed beta-lactamases that were strongly inducible. Hydroxyproline amidase, maltosidase, tri-peptidase, proline deaminase, catalase reaction, Voges-Proskauer test, and fermentation of glycerol, melibiose and myo-inositol were suitable parameters to separate Y. regensburgei from H. alvei.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , beta-Lactamases/pharmacology , Base Sequence , DNA, Bacterial/analysis , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests , Microbiological Techniques , Molecular Sequence Data , Polymerase Chain Reaction , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...