Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2446: 427-449, 2022.
Article in English | MEDLINE | ID: mdl-35157287

ABSTRACT

Fusions of single-domain antibodies (sdAbs, nanobodies) to enzymatic reporters make convenient molecular probes to detect the presence of an antigen of interest. We have previously fused the monomeric hyperactive ascorbate peroxidase derivative APEX2 to anti-Ebolavirus and anti-Marburgvirus sdAbs to generate immunoreagents useful in detecting nucleoprotein (NP) on western blots, ELISA, and within cells following transfection of NP expression plasmids or following virus infection. Here we present the methods used to overexpress and purify these sdAb-APEX2 fusion proteins, and to employ them as probes in various scenarios with colorimetric and fluorometric signal development. We also introduce a dimeric hyperactive ascorbate peroxidase derivative dEAPX that enables bivalent sdAb probes to be produced while avoiding the need to generate more complex tandem sdAbs, leveraging avidity for improved signal strength. The APEX2 and dEAPX reagents appear interchangeable with any existing detection platform and the methods described here should enable a user to study their antigen of interest by simply swapping out the sdAb for their recombinant affinity reagent of choice.


Subject(s)
Ebolavirus , Marburgvirus , Single-Domain Antibodies , Ascorbate Peroxidases/genetics , Nucleoproteins , Single-Domain Antibodies/genetics
2.
ACS Infect Dis ; 8(2): 343-359, 2022 02 11.
Article in English | MEDLINE | ID: mdl-34994194

ABSTRACT

It is often challenging for a single monoclonal antibody to cross-react equally with all species of a particular viral genus that are separated by time and geographies to ensure broad long-term global immunodiagnostic use. Here, we set out to isolate nanobodies or single-domain antibodies (sdAbs) with uniform cross-reactivity to the genus Ebolavirus by immunizing a llama with recombinant nucleoprotein (NP) representing the 5 cultivated species to assemble a phage display repertoire for mining. Screening sdAbs for reactivity against the C-terminal domain of NP guided the isolation of clones that could perform as both captor and tracer for polyvalent antigen in sandwich assays. Two promising sdAbs had equivalent reactivities across all 5 species and greatly enhanced the equilibrium concentration at 50% (EC50) for recombinant NP when compared with a differentially cross-reactive nonimmune sdAb isolated previously. Uniform reactivity and enhanced sensitivity were relayed to live virus titrations, resulting in lower limits of detection of 2-5 pfu for the best sdAbs, representing 10-, 20-, and 100-fold improvements for Zaire, Sudan/Reston, and Taï Forest viruses, respectively. Fusions of the sdAbs with ascorbate peroxidase (APEX2) and mNeonGreen generated one-step immunoreagents useful for colorimetric and fluorescent visualization of cellular NP. Both sdAbs were also able to recognize recombinant NPs from the recently discovered Bombali virus, a putative sixth Ebolavirus species unknown at the start of these experiments, validating the forward capabilities of the sdAbs. The simplicity and modularity of these sdAbs should enable advances in antigen-based diagnostic technologies to be retuned toward filoviral detection relatively easily, thereby proactively safeguarding human health.


Subject(s)
Camelids, New World , Ebolavirus , Single-Domain Antibodies , Animals , Cross Reactions , Humans , Nucleoproteins
3.
ACS Synth Biol ; 10(2): 379-390, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33534552

ABSTRACT

Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from E. coli, to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library. Clones were isolated in days and first fused to Gaussia luciferase to determine EC50 in the tens of nM range, and second fused to the ascorbate peroxidase derivative APEX2 for sensitive detection of SARS-CoV-2 infected cells. To generate inherently fluorescent immunoreagents, we introduce novel periplasmic sdAb fusions made with mNeonGreen and mScarlet-I, which were produced at milligram amounts. The fluorescent fusion proteins enabled concise visualization of SARS-CoV-2 N in the cytoplasm but not in the nucleus 24 h post infection, akin to the distribution of SARS-CoV N, thereby validating these useful imaging tools. SdAb reactivity appeared specific to SARS-CoV-2 with very much weaker binding to SARS-CoV, and no noticeable cross-reactivity to a panel of overexpressed human codon optimized N proteins from other CoV. High periplasmic expression levels and in silico immortalization of the nanobody constructs guarantees a cost-effective and reliable source of SARS-CoV-2 immunoreagents. Our proof-of-principle study should be applicable to known and newly emerging CoV to broaden the tools available for their analysis and help safeguard human health in a more proactive than reactive manner.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Molecular Probes/genetics , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Antibodies, Viral/genetics , Antibody Specificity/genetics , COVID-19/immunology , Communicable Diseases, Emerging/virology , Coronavirus Nucleocapsid Proteins/immunology , Escherichia coli/genetics , Fluorescent Antibody Technique , Genes, Synthetic , Genes, Viral , HEK293 Cells , Humans , Molecular Probes/immunology , Pandemics/prevention & control , Peptide Library , Phosphoproteins/genetics , Phosphoproteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/pathogenicity , Single-Domain Antibodies/genetics , Synthetic Biology
4.
J Mol Biol ; 431(24): 4848-4867, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31626803

ABSTRACT

We had previously shown that three anti-Marburg virus nanobodies (VHH or single-domain antibody [sdAb]) targeted a cryptotope within an alpha-helical assembly at the nucleoprotein (NP) C-terminus that was conserved through half a century of viral evolution. Here, we wished to determine whether an anti-Ebola virus sdAb, that was cross-reactive within the Ebolavirus genus, recognized a similar structural feature upstream of the ebolavirus NP C-terminus. In addition, we sought to determine whether the specificities of a less cross-reactive anti-Zaire ebolavirus sdAb and a totally specific anti-Sudan ebolavirus sdAb were the result of exclusion from this region. Binding and X-ray crystallographic studies revealed that the primary determinant of cross-reactivity did indeed appear to be a preference for the helical feature. Specificity, in the case of the Zaire ebolavirus-specific sdAb, arose from the footprint shifting away from the helices to engage more variable residues. While both sdAbs used CDRs, they also had atypical side-on approaches, with framework 2 helping to accommodate parts of the epitope in sizeable paratope gullies. The Sudan ebolavirus-specific sdAb was more remarkable and appeared to bind two C-terminal domains simultaneously via nonoverlapping epitopes-"paratope duality." One mode involved paratope gullying, whereas the other involved only CDRs, with CDR3 restructuring to wedge in between opposing walls of an interdomain crevice. The varied routes used by sdAbs to engage antigens discovered here deepen our appreciation of the small scaffold's architectural versatility and also reveal lucrative opportunities within the ebolavirus NP C-termini that might be leveraged for diagnostics and novel therapeutic targeting.


Subject(s)
Antibodies, Viral/chemistry , Ebolavirus , Hemorrhagic Fever, Ebola/virology , Nucleoproteins/chemistry , Single-Domain Antibodies/chemistry , Amino Acid Sequence , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Ebolavirus/immunology , Epitopes/chemistry , Epitopes/immunology , Hemorrhagic Fever, Ebola/immunology , Humans , Models, Molecular , Nucleoproteins/antagonists & inhibitors , Nucleoproteins/immunology , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Single-Domain Antibodies/immunology
5.
Front Immunol ; 8: 1197, 2017.
Article in English | MEDLINE | ID: mdl-29021793

ABSTRACT

Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs) of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP) along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes. We hypothesized that RNC would be ideal targets for crosslinkers engineered to promote aberrant protein-protein interactions, thereby blocking their orderly transport and packaging. Previously, we had generated single-domain antibodies (sdAbs) against Filoviruses that have all targeted highly conserved C-terminal regions of NP known to be repetitively exposed along the length of the RNCs of Marburgvirus (MARV) and Ebolavirus (EBOV). Our crosslinker design consisted of dimeric sdAb expressed intracellularly, which we call Xintrabodies (X- for crosslinking). Electron microscopy of purified NP polymers incubated with purified sdAb constructs showed NP aggregation occurred in a genus-specific manner with dimeric and not monomeric sdAb. A virus-like particle (VLP) assay was used for initial evaluation where we found that dimeric sdAb inhibited NP incorporation into VP40-based VLPs whereas monomeric sdAb did not. Inhibition of NP packaging was genus specific. Confocal microscopy revealed dimeric sdAb was diffuse when expressed alone but focused on pools of NP when the two were coexpressed, while monomeric sdAb showed ambivalent partition. Infection of stable Vero cell lines expressing dimeric sdAb specific for either MARV or EBOV NP resulted in smaller plaques and reduced progeny of cognate virus relative to wild-type Vero cells. Though the impact was marginal at later time-points, the collective data suggest that viral replication can be reduced by crosslinking intracellular NP using relatively small amounts of dimeric sdAb to restrict NP packaging. The stoichiometry and ease of application of the approach would likely benefit from transitioning away from intracellular expression of crosslinking sdAb to exogenous delivery of antibody. By retuning sdAb specificity, the approach of crosslinking highly conserved regions of assembly critical proteins may well be applicable to inhibiting replication processes of a broad spectrum of viruses.

6.
Front Immunol ; 8: 1234, 2017.
Article in English | MEDLINE | ID: mdl-29038656

ABSTRACT

Marburg virus (MARV) is a highly lethal hemorrhagic fever virus that is increasingly re-emerging in Africa, has been imported to both Europe and the US, and is also a Tier 1 bioterror threat. As a negative sense RNA virus, MARV has error prone replication which can yield progeny capable of evading countermeasures. To evaluate this vulnerability, we sought to determine the epitopes of 4 llama single-domain antibodies (sdAbs or VHH) specific for nucleoprotein (NP), each capable of forming MARV monoclonal affinity reagent sandwich assays. Here, we show that all sdAb bound the C-terminal region of NP, which was produced recombinantly to derive X-ray crystal structures of the three best performing antibody-antigen complexes. The common epitope is a trio of alpha helices that form a novel asymmetric basin-like depression that accommodates each sdAb paratope via substantial complementarity-determining region (CDR) restructuring. Shared core contacts were complemented by unique accessory contacts on the sides and overlooks of the basin yielding very different approach routes for each sdAb to bind the antigen. The C-terminal region of MARV NP was unable to be crystallized alone and required engagement with sdAb to form crystals suggesting the antibodies acted as crystallization chaperones. While gross structural homology is apparent between the two most conserved helices of MARV and Ebolavirus, the positions and morphologies of the resulting basins were markedly different. Naturally occurring amino acid variations occurring in bat and human Marburgvirus strains all mapped to surfaces distant from the predicted sdAb contacts suggesting a vital role for the NP interface in virus replication. As an essential internal structural component potentially interfacing with a partner protein it is likely the C-terminal epitope remains hidden or "cryptic" until virion disruption occurs. Conservation of this epitope over 50 years of Marburgvirus evolution should make these sdAb useful foundations for diagnostics and therapeutics resistant to drift.

SELECTION OF CITATIONS
SEARCH DETAIL
...