Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Article in English | MEDLINE | ID: mdl-31579351

ABSTRACT

Over the past three decades, the widespread utility and applicability of X-ray photoelectron spectroscopy (XPS) in research and applications has made it the most popular and widely used method of surface analysis. Associated with this increased use has been an increase in the number of new or inexperienced users which has led to erroneous uses and misapplications of the method. This article is the first in a series of guides assembled by a committee of experienced XPS practitioners that are intended to assist inexperienced users by providing information about good practices in the use of XPS. This first guide outlines steps appropriate for determining whether XPS is capable of obtaining the desired information, identifies issues relevant to planning, conducting and reporting an XPS measurement, and identifies sources of practical information for conducting XPS measurements. Many of the topics and questions addressed in this article also apply to other surface-analysis techniques.

3.
Langmuir ; 35(35): 11491-11502, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31385708

ABSTRACT

Brownian dynamics (BD) has been applied as a comprehensive tool to model sedimentation and diffusion of nanoparticles in analytical ultracentrifugation (AUC) experiments. In this article, we extend the BD algorithm by considering space-dependent diffusion and solvent compressibility. With this, the changes in the sedimentation and diffusion coefficient from altered solvent properties at increased pressures are accurately taken into account. Moreover, it is demonstrated how the concept of space-dependent diffusion is employed to describe concentration-dependent sedimentation and diffusion coefficients, in particular, through the Gralen coefficient and the second virial coefficient. The influence of thermodynamic nonideality on diffusional properties can be accurately simulated and agree with well-known evaluation tools. BD simulations for sedimentation equilibrium and sedimentation velocity (SV) AUC experiments including effects of hydrodynamic and thermodynamic nonideality are validated by global evaluation in SEDANAL. The interplay of solvent compressibility and retrieved nonideality parameters can be studied utilizing BD. Finally, the second virial coefficient is determined for lysozyme from SV AUC experiments and BD simulations and compared to membrane osmometry. These results are in line with DLVO theory. In summary, BD simulations are established for the validation of nonideal sedimentation in AUC providing a sound basis for the evaluation of complex interactions even in polydisperse systems.

4.
Eur Biophys J ; 47(7): 709-722, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30003300

ABSTRACT

The goal of this work is to develop a preclinical method for quantitative hydrodynamic and thermodynamic analysis of therapeutic proteins in crowded environments like human serum. The method utilizes tracer amounts of fluorescently labeled monoclonal antibodies and the Aviv AU-FDS optical system. We have performed sedimentation velocity experiments as a function of mAb, human serum albumin and human IgG concentration to extract self- and cross-term hydrodynamic nonideality effects. SV measurements are consistently complicated by weak mAb-mAb and mAb-IgG interactions (Wright et al. in Anal Biochem 550:72-83, 2018). In an attempt to explore different approaches we have investigated measurements of diffusion coefficients by traditional synthetic boundary experiments. Here we present a new technique incorporated into SEDANAL that can globally analyze the full time course of synthetic boundary experiments. This approach also utilizes F-mAb against a high concentration of unlabeled carrier protein (HSA or IgG). In principle both diffusion and sedimentation coefficient information can be extracted including hydrodynamic and thermodynamic nonideality. The method can be performed at a traditional low speed (5-7K rpm) or at high speeds. The high speed method can also be used to measure D and s for small molecules like fluorescein (often contaminants of F-HSA and F-mAb). The advantage of synthetic boundary over the standard sedimentation velocity method is that it allows for higher precision determination of diffusion coefficients. The concentration dependence of D can be corrected for hydrodynamic nonideality effects by plotting D * (1 + kijcj) vs total carrier concentration. The slope of the fitted data allows an alternate approach to determine self- and cross-term thermodynamic nonideality. This method can also explore cross-term diffusion coefficient effects. These results are compared to dynamic light scattering approaches which are limited to kD determinations for solutions of pure protein.


Subject(s)
Antibodies, Monoclonal/metabolism , Serum Albumin, Human/metabolism , Ultracentrifugation , Diffusion , Humans , Thermodynamics
5.
Anal Biochem ; 550: 72-83, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29654743

ABSTRACT

The preclinical characterization of biopharmaceuticals seeks to determine the stability, state of aggregation, and interaction of the antibody/drug with other macromolecules in serum. Analytical ultracentrifugation is the best experimental method to understand these factors. Sedimentation velocity experiments using the AU-FDS system were performed in order to quantitatively characterize the nonideality of fluorescently labeled therapeutic antibodies in high concentrations of human serum proteins. The two most ubiquitous serum proteins are human serum albumin, HSA, and γ-globulins, predominantly IgG. Tracer experiments were done pairwise as a function of HSA, IgG, and therapeutic antibody concentration. The sedimentation coefficient for each fluorescently labeled component as a function of the concentration of the unlabeled component yields the hydrodynamic nonideality (ks). This generates a 3x3 matrix of ks values that describe the nonideality of each pairwise interaction. The ks matrix is validated by fitting both 2:1 mixtures of HSA (1-40 mg/ml) and IgG (0.5-20 mg/ml) as serum mimics, and human serum dilutions (10-100%). The data are well described by SEDANAL global fitting with the ks nonideality matrix. The ks values for antibodies are smaller than expected and appear to be masked by weak association. Global fitting to a ks and K2 model significantly improves the fits.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Serum Albumin, Human/chemistry , Humans , Ultracentrifugation/methods
6.
Anal Chem ; 87(6): 3396-403, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25679871

ABSTRACT

Analytical ultracentrifugation (AUC) has proven to be a powerful tool for the study of particle size distributions, particle shapes, and interactions with high accuracy and unrevealed resolution. In this work we show how the analysis of sedimentation velocity data from the AUC equipped with a multiwavelength detector (MWL) can be used to gain an even deeper understanding of colloidal and macromolecular mixtures. New data evaluation routines have been integrated in the software SEDANAL to allow for the handling of MWL data. This opens up a variety of new possibilities because spectroscopic information becomes available for individual components in mixtures at the same time using MWL-AUC. For systems of known optical properties information on the hydrodynamic properties of the individual components in a mixture becomes accessible. For the first time, the determination of individual extinction spectra of components in mixtures is demonstrated via MWL evaluation of sedimentation velocity data. In our paper we first provide the informational background for the data analysis and expose the accessible parameters of our methodology. We further demonstrate the data evaluation by means of simulated data. Finally, we give two examples which are highly relevant in the field of nanotechnology using colored silica and gold nanoparticles of different size and extinction properties.


Subject(s)
Hydrodynamics , Optical Phenomena , Ultracentrifugation/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Optical Fibers , Silicon Dioxide/chemistry , Time Factors , Ultracentrifugation/instrumentation
7.
Appl Opt ; 50(22): 4403-16, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21833117

ABSTRACT

We describe an analysis procedure for estimating the thermospheric winds and temperatures from the multi-order two-dimensional (2D) interferograms produced by an imaging Fabry-Perot interferometer (FPI) as imaged by a CCD detector. We also present a forward model describing the 2D interferograms. To investigate the robustness and accuracy of the analysis, we perform several Monte Carlo simulations using this forward model for an FPI that has recently been developed and deployed to northeastern Brazil. The first simulation shows that a slight cross-contamination at high temperatures exists between neighboring orders in the interferogram, introducing a bias in the estimated temperatures and increasing errors in both the estimated temperatures and winds when each order is analyzed in full. The second simulation investigates how using less than an entire order in the analysis reduces the cross contamination observed in the first set of simulations, improving the accuracy of the estimated temperatures. The last simulation investigates the effect of the signal-to-noise ratio on the errors in the estimated parameters. It is shown that, for the specific FPI simulated in this study, a signal-to-noise ratio of 1.5 is required to obtain thermospheric wind errors of 5 m/s and temperature errors of 20 K.

8.
Methods Enzymol ; 467: 135-161, 2009.
Article in English | MEDLINE | ID: mdl-19897092

ABSTRACT

We have previously presented a tutorial on direct boundary fitting of sedimentation velocity data for kinetically mediated monomer-dimer systems [Correia and Stafford, 2009]. We emphasized the ability of Sedanal to fit for the k(off) values and measure their uncertainty at the 95% confidence interval. We concluded for a monomer-dimer system the range of well-determined k(off) values is limited to 0.005-10(-5) s(-1) corresponding to relaxation times of approximately 70 to approximately 33,000 s. More complicated reaction schemes introduce the potential complexity of low concentrations of an intermediate that may also influence the kinetic behavior during sedimentation. This can be seen in a cooperative ABCD system (A+B --> C; B+C --> D) where C, the 1:1 complex, is sparsely populated (K(1)=10(4) M(-1), K(2)=10(8) M(-1)). Under these conditions a k(1,off)<0.01 s(-1) produces slow kinetic features. The low concentration of species C contributes to this effect while still allowing the accurate estimation of k(1,off) (although k(2,off) can readily compensate and contribute to the kinetics). More complex reactions involving concerted assembly or cooperative ring formation with low concentrations of intermediate species also display kinetic effects due to a slow flux of material through the sparsely populated intermediate states. This produces a kinetically limited reaction boundary that produces partial resolution of individual species during sedimentation. Cooperativity of ring formation drives the reaction and thus separation of these two effects, kinetics and energetics, can be challenging. This situation is experimentally exhibited by systems that form large oligomers or rings and may especially contribute to formation of micelles and various protein aggregation diseases including formation of beta-amyloid and tau aggregates. Simulations, quantitative parameter estimation by direct boundary fitting and diagnostic features for these systems are presented with an emphasis on the features available in Sedanal to simulate and analyze kinetically mediated systems.


Subject(s)
Centrifugation , Computer Simulation , Models, Molecular , Algorithms , Kinetics
9.
J Phys Chem B ; 110(34): 16992-7000, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16927992

ABSTRACT

It is commonly believed that high-quality CdTe nanoparticles with strong luminescence can only be prepared under the protection of an inert gas such as nitrogen or argon. Here, we report the preparation of highly luminescent CdTe nanoparticles in air and compare their luminescence properties with CdTe nanoparticles made in nitrogen. We find that both water-soluble CdTe nanoparticles made in air and in nitrogen exhibit strong photoluminescence as well as upconversion luminescence at room temperature. However, differences do exist between the particles made in air and those made in nitrogen. In particular, the particles prepared in air display a faster growth rate, grow to larger sizes, and display stronger electron coupling relative to the particles prepared in nitrogen. X-ray photoelectron spectroscopy analysis indicates that the oxygen content in the nanoparticles synthesized in air is higher that that in particles synthesized in N(2), likely resulting in a higher availability of excess free cadmium. Cytotoxicity measurements reveal that the particles made in air appear slightly more toxic, possibly due to the excess of free cadmium.


Subject(s)
Air , Cadmium Compounds/chemical synthesis , Nanoparticles/chemistry , Nitrogen/chemistry , Cadmium Compounds/chemistry , Cadmium Compounds/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Humans , Luminescence , Nanoparticles/toxicity , Solubility , Solvents/chemistry , Tellurium/chemistry , Tellurium/toxicity , Water/chemistry
10.
J Nanosci Nanotechnol ; 5(9): 1309-22, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16193948

ABSTRACT

Visually striking nanoflowers composed of ZnS:Mn2+ nanoparticles are prepared and characterized. The configurations of these fractal structures are very sensitive to both the pH values of the particle solutions from which they are precipitated and the substrates on which they are deposited. At pH 2.2, the fractal structures resemble trees without leaves; at pH 7.7, they are tree-like with four arms and at pH 11.0 they resemble trees with six arms. High resolution transmission microscopy reveals that the nanoflowers are composed of ZnS:Mn2+ nanoparticles of 2-5 nm in size. X-ray photoelectron spectral data indicate that the sample compositions of nitrogen, chlorine, and sulfur vary gradually with pH values of the solutions. These changes may have an impact on both the fractal configuration and the luminescence properties. The emission spectra of the particle solutions at pH values of 2.2 and 11.0 are similar with the emission maximum at 475 nm. As the pH value approaches 7.7, the emission spectral maximum shifts to longer wavelengths. At a pH value of 7.7, the emission peak wavelength is the reddest, 520 nm. The emission peak of the nanoflowers at a pH value of 9.3 is 510 nm, while the emission spectrum of the nanoflowers at 5.2 has two peaks at 500 nm and 440 nm, respectively. These blue-green emissions are attributed to defects and are the dominant luminescence from the nanoflowers. The emission from Mn2+ dopant is only observed in the delayed spectra of the fractal solid samples.


Subject(s)
Crystallization/methods , Luminescence , Manganese/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Sulfides/chemistry , Zinc Compounds/chemistry , Fractals , Light , Manganese/analysis , Manganese/radiation effects , Materials Testing , Nanostructures/radiation effects , Particle Size , Sulfides/analysis , Sulfides/radiation effects , Zinc Compounds/analysis , Zinc Compounds/radiation effects
11.
Science ; 305(5690): 1612-5, 2004 Sep 10.
Article in English | MEDLINE | ID: mdl-15361623

ABSTRACT

Siderophores are extracellular iron-binding compounds that mediate iron transport into many cells. We present evidence of analogous molecules for copper transport from methane-oxidizing bacteria, represented here by a small fluorescent chromopeptide (C45N12O14H62Cu, 1216 daltons) produced by Methylosinus trichosporium OB3b. The crystal structure of this compound, methanobactin, was resolved to 1.15 angstroms. It is composed of a tetrapeptide, a tripeptide, and several unusual moieties, including two 4-thionyl-5-hydroxy-imidazole chromophores that coordinate the copper, a pyrrolidine that confers a bend in the overall chain, and an amino-terminal isopropylester group. The copper coordination environment includes a dual nitrogen- and sulfur-donating system derived from the thionyl imidazolate moieties. Structural elucidation of this molecule has broad implications in terms of organo-copper chemistry, biological methane oxidation, and global carbon cycling.


Subject(s)
Copper/metabolism , Imidazoles/chemistry , Methylosinus trichosporium/metabolism , Oligopeptides/chemistry , Amino Acids/analysis , Chemical Phenomena , Chemistry, Physical , Copper/analysis , Copper/chemistry , Crystallization , Crystallography, X-Ray , Dimerization , Imidazoles/isolation & purification , Imidazoles/metabolism , Ligands , Methane/metabolism , Methylosinus trichosporium/chemistry , Models, Molecular , Molecular Structure , Molecular Weight , Oligopeptides/isolation & purification , Oligopeptides/metabolism , Oxidation-Reduction , Spectrum Analysis
12.
Biophys Chem ; 108(1-3): 231-43, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15043932

ABSTRACT

Analytical ultracentrifugation (AUC) has played and will continue to play an important role in the investigation of protein-protein, protein-DNA and protein-ligand interactions. A major advantage of AUC over other methods is that it allows the analysis of systems free in solution in nearly any buffer without worry about spurious interactions with a supporting matrix. Large amounts of high-quality data can be acquired in relatively short times. Advances in software for the treatment of AUC data over the last decade have eliminated many of the tedious aspects of AUC data analysis, allowing relatively rapid analysis of complicated systems that were previously unapproachable. A software package called sedanal is described that can perform global fits to AUC sedimentation velocity data obtained for both interacting and non-interacting, macromolecular multi-species, multi-component systems, by combining data from multiple runs over a range of sample concentrations and component ratios. Interaction parameters include both forward and reverse rate constants, or equilibrium constants, for each reaction, as well as concentration dependence of both sedimentation and diffusion coefficients. sedanal fits to time-difference data to eliminate time-independent systematic errors inherent in AUC data. The sedanal software package is based on the use of finite-element numerical solutions of the Lamm equation.


Subject(s)
Algorithms , Macromolecular Substances , Ultracentrifugation/methods , DNA/chemistry , Kinetics , Ligands , Models, Chemical , Monte Carlo Method , Proteins/chemistry , Software , Solutions
13.
Anal Chem ; 75(20): 5399-405, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14710818

ABSTRACT

Sol-gel-derived silicate films were electrochemically deposited on conducting surfaces from a sol consisting of tetramethoxysilane (TMOS). In this method, a sufficiently negative potential is applied to the electrode surface to reduce oxygen to hydroxyl ions, which serves as the catalyst for the hydrolysis and condensation of TMOS. The electrodeposition process was followed by the electrochemical quartz crystal microbalance and cyclic voltammetry. The electrodeposited films were characterized for their surface morphology, porosity, and film thickness using atomic force microscopy, electrochemical probe techniques, surface area and pore size analysis, and profilometry. The electrodeposited films were found to have a completely different surface structure and to be significantly rougher relative to spin-coated films. This is likely due in part to the separation of the gelation and evaporation stages of film formation. The electrodeposited films were found to be permeable to simple redox molecules, such as ruthenium(III) hexaammine and ferrocene methanol. Film thickness can be easily varied from < 75 nm to > 15 microm by varying the electrode potential from -600 mV to more than -1000 mV, respectively. The electrodeposition process was further applied for the electroencapsulation of redox molecules and organic dyes within the silicate network. Cyclic voltammograms for the gel-entrapped ferrocene methanol (FcCH2OH) and ruthenium(II) tris(bipyridine) (Ru(bpy)3(2+)) exhibited the characteristic redox behavior of the molecules. The electroencapsulation of organic dyes in their "native" form proved to be more difficult because these species typically contain reducible functionalities that change the structure of the dye.

SELECTION OF CITATIONS
SEARCH DETAIL
...