Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 4): 654-660, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32831284

ABSTRACT

Single crystals of SmAl3(BO3)4 were synthesized by the group growth on seeds method. The crystal structure was solved using a single-crystal experiment and the purity of the bulk material was proved by the Rietveld method. This borate crystallizes in the monoclinic C2/c space group with unit-cell parameters a = 7.2386 (3), b = 9.3412 (5), c = 11.1013 (4) Šand ß = 103.2240 (10)°. IR and Raman spectroscopic analyses confirmed the monoclinic structure of SmAl3(BO3)4. Under 532.1 nm excitation, luminescence spectra exhibit bands assignable to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2. The similarity of the luminescence spectra of the trigonal and monoclinic polymorphs is explained by the minor role of Sm-O bond distortion and the primary role of rotational distortion of SmO6 octahedra. The smaller covalency of the Sm-O bond in alumoborates is deduced in comparison with galloborates. Calorimetric measurements did not reveal high-temperature structural phase transitions up to a temperature of 720 K.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 176: 106-113, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28088082

ABSTRACT

Two ammonium oxofluorovanadates, (NH4)3VO2F4 and (NH4)3VOF5, have been investigated by temperature-dependent infrared and Raman spectroscopy methods to determine the nature of phase transitions (PT) in these compounds. Dynamics of quasioctahedral groups was simulated within the framework of semi-empirical approach, which justified the cis-conformation of VO2F43- (C2v) and the C4v geometry of VOF53-. The observed infrared and Raman spectra of both compounds at room temperature (RT) revealed the presence at least of two crystallographically independent octahedral groups. The first order PT at elevated temperatures is connected with a complete dynamic disordering of these groups with only single octahedral state. At lower temperatures, the octahedra are ordered and several octahedral states appear. This PT is the most pronounced in the case of (NH4)3VOF5, when at least seven independent VOF53- octahedra are present in the structure below 50K, in accordance with the Raman spectra. Ammonium groups do not take part in PTs at higher and room temperatures but their reorientational motion freezes at lower temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...