Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242091

ABSTRACT

Three UiO-66 samples were prepared by solvothermal synthesis using the defect engineering approach with benzoic acid as a modulator. They were characterized by different techniques and their acidic properties were assessed by FTIR spectroscopy of adsorbed CO and CD3CN. All samples evacuated at room temperature contained bridging µ3-OH groups that interacted with both probe molecules. Evacuation at 250 °C leads to the dehydroxylation and disappearance of the µ3-OH groups. Modulator-free synthesis resulted in a material with open Zr sites. They were detected by low-temperature CO adsorption on a sample evacuated at 200 °C and by CD3CN even on a sample evacuated at RT. However, these sites were lacking in the two samples obtained with a modulator. IR and Raman spectra revealed that in these cases, the Zr4+ defect sites were saturated by benzoates, which prevented their interaction with probe molecules. Finally, the dehydroxylation of all samples produced another kind of bare Zr sites that did not interact with CO but formed complexes with acetonitrile, probably due to structural rearrangement. The results showed that FTIR spectroscopy is a powerful tool for investigating the presence and availability of acid sites in UiO-66, which is crucial for its application in adsorption and catalysis.

2.
Biomacromolecules ; 17(11): 3580-3590, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27723983

ABSTRACT

Random copolymers of n-propyl-2-oxazoline and ethylenimine (PPrOx-PEI) were prepared by partial acidic hydrolysis of poly(n-propyl-2-oxazoline) (PPrOx). Dynamic and electrophoretic light scattering and diffusion-ordered NMR spectroscopy were utilized to investigate aqueous solution properties of the copolymers. Above a specific cloud point temperature, well-defined nanoparticles were formed. The latter consisted of a core composed predominantly of PPrOx and a thin positively charged shell from PEI moieties that mediated formation of polyplexes with DNA. The polyplexes were prepared at 65 °C at varying N/P (amine-to-phosphate groups) ratios. They underwent structural changes upon temperature variations 65-25-37 °C depending on N/P. At N/P < 2, the polyplex particles underwent minor changes because of formation of a surface layer of DNA that acted as a barrier and prevented swelling and disintegration of the initial particles. Dramatic rearrangements at N/P ≥ 2 resulting in large swollen microgel particles were overcome by coating of the polyplex particles with a cross-linked polymeric shell. The shell retained the colloidal stability and preserved the physicochemical parameters of the initial polyplex particles while it reduced the high surface potential values. Progressive loss of cytotoxicity upon complexation with DNA and coating of polyplex particles was displayed.


Subject(s)
DNA/chemistry , Gene Transfer Techniques , Genetic Vectors/chemistry , Oxazolone/analogs & derivatives , DNA/genetics , Genetic Vectors/genetics , Humans , Hydrolysis , Micelles , Nanoparticles/chemistry , Oxazolone/chemical synthesis , Oxazolone/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemical synthesis , Polyethyleneimine/chemistry , Solutions/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...