Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 79: 14-26, 2023 09.
Article in English | MEDLINE | ID: mdl-37406763

ABSTRACT

Engineering the utilization of non-native substrates, or synthetic heterotrophy, in proven industrial microbes such as Saccharomyces cerevisiae represents an opportunity to valorize plentiful and renewable sources of carbon and energy as inputs to bioprocesses. We previously demonstrated that activation of the galactose (GAL) regulon, a regulatory structure used by this yeast to coordinate substrate utilization with biomass formation during growth on galactose, during growth on the non-native substrate xylose results in a vastly altered gene expression profile and faster growth compared with constitutive overexpression of the same heterologous catabolic pathway. However, this effort involved the creation of a xylose-inducible variant of Gal3p (Gal3pSyn4.1), the sensor protein of the GAL regulon, preventing this semi-synthetic regulon approach from being easily adapted to additional non-native substrates. Here, we report the construction of a variant Gal3pMC (metabolic coordinator) that exhibits robust GAL regulon activation in the presence of structurally diverse substrates and recapitulates the dynamics of the native system. Multiple molecular modeling studies suggest that Gal3pMC occupies conformational states corresponding to galactose-bound Gal3p in an inducer-independent manner. Using Gal3pMC to test a regulon approach to the assimilation of the non-native lignocellulosic sugars xylose, arabinose, and cellobiose yields higher growth rates and final cell densities when compared with a constitutive overexpression of the same set of catabolic genes. The subsequent demonstration of rapid and complete co-utilization of all three non-native substrates suggests that Gal3pMC-mediated dynamic global gene expression changes by GAL regulon activation may be universally beneficial for engineering synthetic heterotrophy.


Subject(s)
Saccharomyces cerevisiae Proteins , Transcription Factors , Transcription Factors/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Heterotrophic Processes , Galactose/genetics , Galactose/metabolism , Xylose/genetics , Xylose/metabolism , Saccharomyces cerevisiae/metabolism
2.
ACS Catal ; 12(4): 2381-2396, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-37325394

ABSTRACT

Deep mutational scanning (DMS) has recently emerged as a powerful method to study protein sequence-function relationships but it has not been well-explored as a guide to enzyme engineering and identifying pathways by which their catalytic cycle may be improved. We report such a demonstration in this work using a Phenylalanine ammonia-lyase (PAL), which deaminates L-phenylalanine to trans-cinnamic acid and has widespread application in chemo-enzymatic synthesis, agriculture, and medicine. In particular, the PAL from Anabaena variabilis (AvPAL*) has garnered significant attention as the active ingredient in Pegvaliase®, the only FDA-approved drug treating classical Phenylketonuria (PKU). Although an extensive body of literature exists on the structure, substrate-specificity, and catalytic cycle, protein-wide sequence determinants of function remain unknown, as do intermediate reaction steps that limit turnover frequency, all of which has hindered rational engineering of these enzymes. Here, we created a detailed sequence-function landscape of AvPAL* by performing DMS and revealed 112 mutations at 79 functionally relevant sites that affect a positive change in enzyme fitness. Using fitness values and structure-function analysis, we picked a subset of positions for comprehensive single- and multi-site saturation mutagenesis and identified combinations of mutations that led to improved reaction kinetics in cell-free and cellular contexts. We then performed QM/MM and MD to understand the mechanistic role of the most beneficial mutations and observed that different mutants confer improvements via different mechanisms, including stabilizing transition and intermediate states, improving substrate diffusion into the active site, and decreasing product inhibition. This work demonstrates how DMS can be combined with computational analysis to effectively identify significant mutations that enhance enzyme activity along with the underlying mechanisms by which these mutations confer their benefit.

SELECTION OF CITATIONS
SEARCH DETAIL
...