Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Foods ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998615

ABSTRACT

Miang is a traditional fermented food made from Assam tea leaves and consumed as a snack. This study investigated the underground Miang fermentation process practiced by the Luar ethnic group in Laos, specifically examining the nutritional composition and microbial dynamics. Lactic acid bacteria and yeast were dominant in the fermentation process, reaching 8.43 and 8.50 log CFU/g after one week before gradually declining, while the coliform bacterial count was at 5.31 log CFU/g in the initial week but became undetectable in the later stages of fermentation. Next-generation sequencing identified Firmicutes (75.02%) and Proteobacteria (23.51%) as the primary phyla. Bacterial genera included Lactobacillus (73.36%) and Acetobacter (21.06%), with fungi mainly represented by Pichia (85.52%) and Candida (13.45%). Fundamental microbes such as Lactobacillus and Acetobacter were predominantly present, alongside Pichia and Candida, in the fungal communities. Microbial activities played a crucial role in generating essential enzymes for Miang's transformation. The nutritional transformation appears to be complete at 5 weeks of fermentation. The moisture content in the final products was approximately 74% and correlated with a change in nitrogen-free extract (NFE) and crude fiber. The fat content showed a slight increase from 1.3% to 2.52%, but protein content slightly declined from 17.21% to 16.05%, whereas ash content did not change significantly. Key polysaccharide-degrading enzymes, particularly pectinase and ß-mannanase, were revealed and peaked at 48.32 and 25.32 U/g Miang, respectively. The total polyphenols increased from 103.54 mg/g dry Miang to 144.19-155.52 mg/g during fermentation. The lowered IC50 value indicated an increase in antioxidant activity. A fermentation period of at least 3 weeks proved to be optimal for enhancing antioxidant properties and bioactive compounds, and mitigating the risk of coliform bacteria.

2.
Front Plant Sci ; 15: 1384602, 2024.
Article in English | MEDLINE | ID: mdl-38867884

ABSTRACT

Introduction: Unintended wounding or bruising during harvest or postharvest handling leads to significant tuber loss and imposes economic burden to potato industry. Therefore, finding effective strategies to mitigate wound-related tuber losses is very important from industry perspectives. Formation of protective barrier through accumulation of suberin polyphenolics (SPP) is a natural and initial response of potato tuber tissues to wounding. Materials and methods: In this study, efficacy of two natural elicitors, such as chitosan oligosaccharide (COS 0.125 g L-1) and cranberry pomace residue (Nutri-Cran 0.125 g L-1) was investigated using a mechanically wounded tuber tissue model and by histological determination of SPP formation in five agronomically relevant and red-skin potato cultivars (Chieftain, Dakota Rose, Dakota Ruby, Red LaSoda, Red Norland). Furthermore, the potential role of stress protective metabolic regulation involving phenolic metabolites, proline, and antioxidant enzymes in tuber WH processes were also investigated during 0-9 days after wounding. Results and discussion: Exogenous treatments of both COS and Nutri-Cran resulted into enhanced SPP formation in wounded surface, but the impact was more rapid with Nutri-Cran treatment in select cultivars. Greater contents of total soluble phenolic, ferulic acid, chlorogenic acid, total antioxidant activity, and superoxide dismutase activity were also observed in elicitor treated tuber tissues at different time points after wounding. Nutri-Cran treatment also reduced the activity of succinate dehydrogenase in Red Norland and Dakota Ruby at 3 d, indicating a suppression in respiration rate. Collectively, these results suggest that Nutri-Cran can be potentially utilized as an effective WH treatment to potato tubers for minimizing wound-related losses.

3.
Foods ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38890920

ABSTRACT

This study thoroughly examined the proximate composition, bioactive composition, and in vitro biological activities of three different cultivars of papaya leaf extracts (PLEs) as potential functional ingredients and nutraceuticals. The dark green leaves of three papaya cultivars, Khaek Dam (KD), Holland (H), and Thai Local (L), were used in this study. The protein content of the leaves ranged from 25.96 to 32.18%, the fat content ranged from 7.34 to 11.66%, the carbohydrate content ranged from 5.80 to 17.91%, the moisture content ranged from 6.02 to 6.49%, the ash content ranged from 11.23 to 12.40%, and the fiber content ranged from 23.24 to 38.48%. The L cultivar possessed significantly higher protein and carbohydrate contents, whereas the H cultivar had the highest ash content (p < 0.05). The total phenolic content (TPC) ranged from 113.94 to 173.69 mg GAE/g extract, with the KD cultivar having the highest TPC (p < 0.05). Several metabolic compounds such as phenolic compounds (particularly kaempferol, isorhamnetin, quercetin, ferulic acid, isoferulic acid, salicylic acid, sinapic acid, syringic acid, and vanillin), terpenoids (such as eucalyptol), glycosides, and indole were identified. The PLE from the KD cultivar had the highest levels of DPPH• inhibition, metal chelation, reducing power, and antidiabetic activity (p < 0.05), suggesting superior biological activity. All three PLEs reduced the proliferation of RAW 264.7 cells in a dose-dependent manner with low nitric oxide formation. These results indicate that the papaya leaf, particularly from the KD cultivar, could be a promising source of functional food ingredients.

4.
PLoS One ; 19(5): e0302717, 2024.
Article in English | MEDLINE | ID: mdl-38718045

ABSTRACT

Bacterial pathogens have remained a major public health concern for several decades. This study investigated the antibacterial activities of Miang extracts (at non-neutral and neutral pH) against Bacillus cereus TISTR 747, Escherichia coli ATCC 22595, Salmonella enterica serovar Typhimurium TISTR 292 and Streptococcus mutans DMST 18777. The potential of Polyvinylpolypyrrolidone (PVPP)-precipitated tannin-free Miang extracts in growth-inhibition of the cariogenic Streptococcus mutans DMST 18777 and its biofilms was also evaluated. The tannin-rich fermented extracts had the best bacterial growth inhibition against S. mutans DMST 18777 with an MIC of 0.29 and 0.72 mg/mL for nonfilamentous fungi (NFP) Miang and filamentous-fungi-processed (FFP) Miang respectively. This observed anti-streptococcal activity still remained after PVPP-mediated precipitation of bioactive tannins especially, in NFP and FFP Miang. Characterization of the PVPP-treated extracts using High performance liquid chromatography quadrupole-time of flight-mass spectrometry (HPLC-QToF-MS) analysis, also offered an insight into probable compound classes responsible for the activities. In addition, Crystal violet-staining also showed better IC50 values for NFP Miang (4.30 ± 0.66 mg/mL) and FFP Miang (12.73 ± 0.11 mg/mL) against S. mutans DMST 18777 biofilms in vitro. Homology modeling and molecular docking analysis using HPLC-MS identified ligands in tannin-free Miang supernatants, was performed against modelled S. mutans DMST 18777 sortase A enzyme. The in silico analysis suggested that the inhibition by NFP and FFP Miang might be attributed to the presence of ellagic acid, flavonoid aglycones, and glycosides. Thus, these Miang extracts could be optimized and explored as natural active pharmaceutical ingredients (NAPIs) for applications in oral hygienic products.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Extracts , Streptococcus mutans , Tannins , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/pharmacology , Tannins/chemistry , Biofilms/drug effects , Biofilms/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Bacterial Proteins/metabolism
5.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731704

ABSTRACT

This study focused on isolating tannin-tolerant yeasts from Miang, a fermented tea leaf product collected from northern Laos PDR, and investigating related food applications. From 43 Miang samples, six yeast isolates capable of ethanol production were obtained, with five isolates showing growth on YPD agar containing 4% (w/v) tannic acid. Molecular identification revealed three isolates as Saccharomyces cerevisiae (B5-1, B5-2, and C6-3), along with Candida tropicalis and Kazachstania humilis. Due to safety considerations, only Saccharomyces spp. were selected for further tannic acid tolerance study to advance food applications. Tannic acid at 1% (w/v) significantly influenced ethanol fermentation in all S. cerevisiae isolates. Notably, B5-2 and C6-3 showed high ethanol fermentation efficiency (2.5% w/v), while others were strongly inhibited. The application of tannin-tolerant yeasts in longan fruit wine (LFW) fermentation with longan seed extract (LSE) supplementation as a source of tannin revealed that C6-3 had the best efficacy for LFW fermentation. C6-3 showed promising efficacy, particularly with LSE supplementation, enhancing phenolic compounds, antioxidant activity, and inhibiting α-glucosidase activity, indicating potential antidiabetic properties. These findings underscore the potential of tannin-tolerant S. cerevisiae C6-3 for fermenting beverages from tannin-rich substrates like LSE, with implications for functional foods and nutraceuticals promoting health benefits.

6.
Foods ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38790769

ABSTRACT

This study investigated the potential of microbial fermentative transforming processes in valorizing the cashew apple by-product into a low-alcohol, health-benefiting beverage. We particularly investigated the use of a non-Saccharomyces yeast, Cyberlindnera rhodanensis DK, as the main targeted microbe. At 30 °C without agitation, C. rhodanensis DK caused changes in key parameters during the fermentation of cashew apple juice (CAJ) in terms of varied pH values and initial sugar concentrations. This result indicated that pure CAJ, with pH adjusted to 6 and with the original 6.85% (w/v) total sugar content, was the most feasible condition, as glucose and fructose were mostly consumed at 12 days of fermentation. A co-culture approach with either Saccharomyces cerevisiae TISTR 5088 or Lactobacillus pentosus A14-6 was investigated to improve both physicochemical and fermentation characteristics. Co-fermentation with S. cerevisiae TISTR 5088 resulted in significantly increased ethanol accumulation to 33.61 ± 0.11 g/L, but diminished bioactive compounds, antioxidant activity, and antidiabetic potential. In contrast, co-fermentation with L. pentosus A14-6 demonstrated excellent outcomes, as it significantly increased sugar consumption and finally remained at only 4.95 g/L compared to C. rhodanensis DK alone, produced lower levels of ethanol at only 19.47 ± 0.06 g/L, and higher total titratable acid (TTA), resulting in a final pH of 3.6. In addition, co-fermentation with this lactic acid bacterium significantly enhanced bioactive compounds and antioxidant activity and also retained potential antidiabetic properties. These findings highlight the feasibility of using tailored microbial fermentation strategies to produce low-alcohol beverages with enhanced health-promoting properties from CAJ; however, product-development processes following health food regulations and sensory evaluation are necessary.

7.
J Fungi (Basel) ; 10(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38667914

ABSTRACT

This study aims to utilize the microbial resources found within Laphet-so, a traditional fermented tea in Myanmar. A total of 18 isolates of thermotolerant yeasts were obtained from eight samples of Laphet-so collected from southern Shan state, Myanmar. All isolates demonstrated the tannin tolerance, and six isolates were resistant to 5% (w/v) tannin concentration. All 18 isolates were capable of carboxy-methyl cellulose (CMC) degrading, but only the isolate DK showed ethanol production at 45 °C noticed by gas formation. This ethanol producing yeast was identified to be Cyberlindnera rhodanensis based on the sequence analysis of the D1/D2 domain on rRNA gene. C. rhodanensis DK produced 1.70 ± 0.01 U of thermostable extracellular ß-glucosidase when cultured at 37 °C for 24 h using 0.5% (w/v) CMC as a carbon source. The best two carbon sources for extracellular ß-glucosidase production were found to be either xylose or xylan, with ß-glucosidase activity of 3.07-3.08 U/mL when the yeast was cultivated in the yeast malt extract (YM) broth containing either 1% (w/v) xylose or xylan as a sole carbon source at 37 °C for 48 h. The optimal medium compositions for enzyme production predicted by Plackett-Burman design and central composite design (CCD) was composed of yeast extract 5.83 g/L, peptone 10.81 g/L and xylose 20.20 g/L, resulting in a production of 7.96 U/mL, while the medium composed (g/L) of yeast extract 5.79, peptone 13.68 and xylan 20.16 gave 9.45 ± 0.03 U/mL for 48 h cultivation at 37 °C. Crude ß-glucosidase exhibited a remarkable stability of 100%, 88% and 75% stable for 3 h at 35, 45 and 55 °C, respectively.

8.
Foods ; 13(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38397523

ABSTRACT

The effect of lecithin addition on the gelling characteristics and oxidative stability of single-washed mackerel (Auxis thazard) surimi was investigated in this study. Surimi was chopped in the presence of 2.5% (w/w) NaCl with different concentrations of lecithin (0, 0.1, 0.5, 1, and 1.5 g/100 g surimi). The rheological behavior, gel-forming ability, microstructure, and lipid oxidation of lecithin-added surimi varied significantly depending on lecithin content. When compared to the control, lecithin at 0.1, 0.5, and 1 g/100 g improved the breaking force of the gel (p < 0.05). The breaking force of the gel decreased significantly as lecithin concentration increased (up to 1.5 g/100 g) (p < 0.05). Deformation, on the other hand, reacted differently to the lecithin than it did to the breaking force. At a lecithin level of 0.1 g/100 g, the surimi gel displayed improved deformation (p < 0.05). Nonetheless, at higher doses (0.5-1.5 g/100 g), lecithin considerably reduced surimi gel deformation (p < 0.05), and the gel containing lecithin at 1.5 g/100 g showed significantly decreased deformation. Surimi with 0.1 g/100 g lecithin had the lowest expressible drip (p < 0.05). In general, lecithin at concentrations ranging from 0.1 to 1 g/100 g reduced expressible drip (p < 0.05), but not at 1.5 g/100 g, which was equivalent to the control (p > 0.05). Adding lecithin to mackerel surimi improved its whiteness slightly, regardless of concentration. Lecithin impacted the microstructures of surimi gel in a concentration-dependent manner. Lecithin at a concentration of 0.1 g/100 g produced a densely packed network with small, jointed clusters and minimal holes within the gel. Joined clusters in the gel were reduced by 0.5-1.5 g/100 g lecithin, and continuous aggregates predominated. Surprisingly, at higher doses of lecithin, notably 1.5 g/100 g, porous structures with continuous voids were perceived. Surimi gels treated with various lecithin doses had lower thiobarbituric acid reactive substances (TBARS) levels than the control (p < 0.05). Overall, lecithin at a low concentration of 0.1 g/100 g was most effective at improving the texture, increasing water-holding capacity, lightening the color, and delaying lipid oxidation of single-washed mackerel surimi.

9.
Foods ; 12(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569220

ABSTRACT

For long-term food sustainability and security, it is crucial to recognize and preserve Indigenous rice varieties and their diversity. Yoom Noon is one of the non-glutinous rice (Oryza sativa L.) varieties being conserved as part of the Phanang Basin Area Development Project, which is administered by the Royal Initiative of Nakhon Si Thammarat in Southern Thailand. The goal of this research was to compare the nutritional profiles of Yoom Noon white rice, brown rice, and germinated brown rice. The results indicated that carbohydrate content was found to be the most plentiful macronutrient in all processed Yoom Noon rice types, accounting for 67.1 to 81.5% of the total. White rice had the highest carbohydrate content (p < 0.05), followed by brown rice and germinated brown rice. Brown rice had more protein and fat than white rice (p < 0.05). The maximum protein, dietary fiber, and ash content were found in germinated brown rice, followed by brown rice and white rice (p < 0.05). White rice had the highest amylose content, around 24% (p < 0.05), followed by brown rice (22%), and germinated brown rice (20%). Mg levels in all white, brown, and germinated brown rice ranged from 6.59 to 10.59 mg/100 g, which was shown to be the highest among the minerals studied (p < 0.05). Zn (4.10-6.18 mg/100 g) was the second most abundant mineral, followed by Fe (3.45-4.92 mg/100 g), K (2.61-3.81 mg/100 g), Mn (1.20-4.48 mg/100 g), Ca (1.14-1.66 mg/100 g), and Cu (0.16-0.23 mg/100 g). Se was not found in any processed Yoom Noon rice. Overall, brown rice had the highest content of macro- and micronutrients (p < 0.05). In all processed rice, thiamin was found in the highest amount (56-85 mg/100 g), followed by pyridoxine (18-44 g/100 g) and nicotinamide (4-45 g/100 g) (p < 0.05). Riboflavin was not identified in any of the three types of processed Yoom Noon rice. Individual vitamin concentrations varied among processed rice, with germinated brown rice having the highest thiamine content by around 1.5 and 1.3 folds compared to white and brown rice, respectively. The GABA level was the highest in germinated rice (585 mg/kg), which was around three times higher than in brown rice (p < 0.05), whereas GABA was not detectable in white rice. The greatest total extractable flavonoid level was found in brown rice (495 mg rutin equivalent (RE)/100 g), followed by germinated brown rice (232 mg RE/100 g), while white rice had no detectable total extractable flavonoid. Brown rice had the highest phytic acid level (11.2 mg/100 g), which was 1.2 times higher than germinated brown rice (p < 0.05). However, phytic acid was not detected in white rice. White rice (10.25 mg/100 g) and brown rice (10.04 mg/100 g) had the highest non-significant rapidly available glucose (RAG) values, while germinated brown rice had the lowest (5.33 mg/100 g). In contrast, germinated brown rice had the highest slowly available glucose (SAG) value (9.19 mg/100 g), followed by brown rice (3.58 mg/100 g) and white rice (1.61 mg/100 g) (p < 0.05).

10.
PLoS One ; 18(6): e0281035, 2023.
Article in English | MEDLINE | ID: mdl-37315001

ABSTRACT

Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.


Subject(s)
Biological Products , Garlic , Agar , Candida albicans , Spices , Antioxidants , Biofilms
11.
Front Microbiol ; 14: 1043430, 2023.
Article in English | MEDLINE | ID: mdl-36876082

ABSTRACT

Our recent research study focused on Miang fermentation revealed that tannin-tolerant yeasts and bacteria play vital roles in the Miang production process. A high proportion of yeast species are associated with plants, insects, or both, and nectar is one of the unexplored sources of yeast biodiversity. Therefore, this study aimed to isolate and identify yeasts of tea flowers of Camellia sinensis var. assamica and to investigate their tannin tolerance, which is a property essential to Miang production processes. A total of 82 yeasts were recovered from a total of 53 flower samples in Northern Thailand. It was found that two and eight yeast strains were distinct from all other known species within the genera Metschnikowia and Wickerhamiella, respectively. These yeast strains were described as three new species, namely, Metschnikowia lannaensis, Wickerhamiella camelliae, and W. thailandensis. The identification of these species was based on phenotypic (morphological, biochemical, and physiological characteristics) and phylogenetic analyses of a combination of the internal transcribed spacer (ITS) regions and the D1/D2 domains of the large subunit (LSU) ribosomal RNA gene. The yeast diversity in tea flowers acquired from Chiang Mai, Lampang, and Nan provinces had a positive correlation with those acquired from Phayao, Chiang Rai, and Phrae, respectively. Wickerhamiella azyma, Candida leandrae, and W. thailandensis were the species uniquely found in tea flowers collected from Nan and Phrae, Chiang Mai, and Lampang provinces, respectively. Some of the tannin-tolerant and/or tannase-producing yeasts were associated with yeasts in the commercial Miang process and those found during Miang production, i.e., C. tropicalis, Hyphopichia burtonii, Meyerozyma caribbica, Pichia manshurica, C. orthopsilosis, Cyberlindnera fabianii, Hanseniaspora uvarum, and Wickerhamomyces anomalus. In conclusion, these studies suggest that floral nectar could support the formation of yeast communities that are beneficial for Miang production.

12.
Front Nutr ; 10: 1132228, 2023.
Article in English | MEDLINE | ID: mdl-36925963

ABSTRACT

The high maize (Zea mays L.) diversity in Peru has been recognized worldwide, but the investigation focused on its integral health-relevant and bioactive characterization is limited. Therefore, this research aimed at studying the variability of the primary and the secondary (free and dietary fiber-bound phenolic, and carotenoid compounds) metabolites of three maize types (white, red, and orange) from the Peruvian Andean race Cabanita at different maturity stages (milk-S1, dough-S2, and mature-S3) using targeted and untargeted methods. In addition, their antioxidant potential, and α-amylase and α-glucosidase inhibitory activities relevant for hyperglycemia management were investigated using in vitro models. Results revealed a high effect of the maize type and the maturity stage. All maize types had hydroxybenzoic and hydroxycinnamic acids in their free phenolic fractions, whereas major bound phenolic compounds were ferulic acid, ferulic acid derivatives, and p-coumaric acid. Flavonoids such as luteolin derivatives and anthocyanins were specific in the orange and red maize, respectively. The orange and red groups showed higher phenolic ranges (free + bound) (223.9-274.4 mg/100 g DW, 193.4- 229.8 mg/100 g DW for the orange and red maize, respectively) than the white maize (162.2-225.0 mg/100 g DW). Xanthophylls (lutein, zeaxanthin, neoxanthin, and a lutein isomer) were detected in all maize types. However, the orange maize showed the highest total carotenoid contents (3.19-5.87 µg/g DW). Most phenolic and carotenoid compounds decreased with kernel maturity in all cases. In relation to the primary metabolites, all maize types had similar fatty acid contents (linoleic acid > oleic acid > palmitic acid > α-linolenic acid > stearic acid) which increased with kernel development. Simple sugars, alcohols, amino acids, free fatty acids, organic acids, amines, and phytosterols declined along with grain maturity and were overall more abundant in white maize at S1. The in vitro functionality was similar among Cabanita maize types, but it decreased with the grain development, and showed a high correlation with the hydrophilic free phenolic fraction. Current results suggest that the nutraceutical characteristics of orange and white Cabanita maize are better at S1 and S2 stages while the red maize would be more beneficial at S3.

13.
J Fungi (Basel) ; 9(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36836280

ABSTRACT

This research demonstrated an excellent potential approach for utilizing Miang fermentation broth (MF-broth), a liquid residual byproduct from the Miang fermentation process as a health-targeted beverage. One hundred and twenty yeast strains isolated from Miang samples were screened for their potential to ferment MF-broth and four isolates, P2, P3, P7 and P9 were selected, based on the characteristics of low alcoholic production, probiotic properties, and tannin tolerance. Based on a D1/D2 rDNA sequence analysis, P2 and P7 were identified to be Wikerhamomyces anomalus, while P3 and P9 were Cyberlindnera rhodanensis. Based on the production of unique volatile organic compounds (VOCs), W. anomalus P2 and C. rhodanensis P3 were selected for evaluation of MF-broth fermentation via the single culture fermentation (SF) and co-fermentation (CF) in combination with Saccharomyces cerevisiae TISTR 5088. All selected yeasts showed a capability for growth with 6 to 7 log CFU/mL and the average pH value range of 3.91-4.09. The ethanol content of the fermented MF-broth ranged between 11.56 ± 0.00 and 24.91 ± 0.01 g/L after 120 h fermentation, which is categorized as a low alcoholic beverage. Acetic, citric, glucuronic, lactic, succinic, oxalic and gallic acids slightly increased from initial levels in MF-broth, whereas the bioactive compounds and antioxidant activity were retained. The fermented MF-broth showed distinct VOCs profiles between the yeast groups. High titer of isoamyl alcohol was found in all treatments fermented with S. cerevisiae TISTR 5088 and W. anomalus P2. Meanwhile, C. rhodanensis P3 fermented products showed a higher quantity of ester groups, ethyl acetate and isoamyl acetate in both SF and CF. The results of this study confirmed the high possibilities of utilizing MF-broth residual byproduct in for development of health-targeted beverages using the selected non-Saccharomyces yeast.

14.
Front Nutr ; 9: 983208, 2022.
Article in English | MEDLINE | ID: mdl-36225880

ABSTRACT

The high diversity of the Peruvian Andean maize (Zea mays L.) represents a biological and genetic heritage relevant for food security, but few studies are targeted toward its characterization and consequent valorization and preservation. The objective of this study was to evaluate the potential of the Peruvian Andean maize race Cabanita with respect to its bioactive profiles (free and bound phenolic and carotenoid composition), physical characteristics, and in vitro antioxidant properties. Maize landraces with variable kernel pigmentation were collected from two provinces (Caylloma and Castilla) within the Arequipa region (among ten Andean sites) and the phytochemical profile was evaluated by Ultra High-Performance Liquid Chromatography with diode array detector (UHPLC-DAD). All maize samples were important sources of phenolic compounds mainly soluble p-coumaric and ferulic acid derivatives whereas anthocyanins were only detected in maize with partially red pigmented kernels. Major phenolic compounds in the bound phenolic fractions were ferulic acid and its derivatives along with p-coumaric acid. Carotenoid compounds including xanthophylls such as lutein, lutein isomers, and zeaxanthin were only detected in orange and white-yellow pigmented maize and are reported for the first time in Peruvian landraces. The multivariate analysis using Principal Components Analysis (PCA) revealed low variability of all data which may indicate a level of similarity among maize samples based on evaluated variables. However, maize grown in Caylloma province showed more homogeneous physical characteristics and higher yield, whereas higher phenolic contents and antioxidant capacity were observed in maize from Castilla. Samples CAY (yellow-pigmented kernel, Castilla) and COM (orange-pigmented kernel, Caylloma) had the highest total phenolic (246.7 mg/100 g dried weight basis, DW) and carotenoid (1.95 µg/g DW) contents among all samples. The variable Andean environmental conditions along with differences in farming practices may play a role and should be confirmed with further studies. Current results provide the metabolomic basis for future research using integrated omics platforms targeted toward the complete characterization of the ethnic-relevant maize race Cabanita.

15.
Microorganisms ; 10(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35744715

ABSTRACT

Histamine is a toxic biogenic amine commonly found in seafood products or their derivatives. This metabolite is produced by histamine-producing bacteria (HPB) such as Proteus vulgaris, P. mirabilis, Enterobacter aerogenes, E. cloacae, Serratia fonticola, S. liquefaciens, Citrobacter freundii, C. braakii, Clostridium spp., Raoultella planticola, R. ornithinolytica, Vibrio alginolyticus, V. parahaemolyticus, V. olivaceus, Acinetobacter lowffi, Plesiomonas shigelloides, Pseudomonas putida, P. fluorescens, Aeromonas spp., Photobacterium damselae, P. phosphoreum, P. leiognathi, P. iliopiscarium, P. kishitanii, and P. aquimaris. In this review, the role of these bacteria in histamine production in fish and seafood products with consequences for human food poisoning following consumption are discussed. In addition, methods to control their activity in countering histamine production are proposed.

16.
Antibiotics (Basel) ; 11(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35625217

ABSTRACT

The polymicrobial biofilm of C. albicans with E. coli exhibits a dynamic interspecies interaction and is refractory to conventional antimicrobials. In this study, a high biofilm-forming multidrug-resistant strain of C. albicans overcomes inhibition by E. coli in a 24 h coculture. However, following treatment with whole Aqueous Garlic Extract (AGE), these individual biofilms of multidrug-resistant C. albicans M-207 and Ampicillin-resistant Escherichia coli ATCC 39936 and their polymicrobial biofilm were prevented, as evidenced by biochemical and structural characterization. This study advances the antimicrobial potential of AGE to inhibit drug-resistant C. albicans and bacterial-associated polymicrobial biofilms, suggesting the potential for effective combinatorial and synergistic antimicrobial designs with minimal side effects.

17.
Insects ; 13(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35206710

ABSTRACT

A total of 51 pentose utilizing lactic acid bacteria (LAB) were isolated from acid-forming bacteria in the midgut of healthy mature Eri silkworm using de Man, Rogosa and Sharpe (MRS) agar containing 10 g/L xylose (MRS-xylose) as the carbon source supplemented with 0.04% (w/v) bromocresol purple. Further analysis of 16S rRNA gene sequences revealed the highest prevalence of up to 35 enterococci isolates, which included 20 isolates of Enterococcus mundtii, followed by Entercoccus faecalis (eight isolates), Weissella cibaria (four isolates), Enterococcus hirae (two isolates), Enterococcus lactis (one isolate), and Enterococcus faecium (one isolate). All 51 LAB isolates showed positive growth on MRS containing a range of polysaccharides as the sole carbon source. All isolates were able to grow and form clear zones on MRS supplemented with 1 g/L xylose, while E. faecalis SC1, E. faecalis SCT2, and E. hirae SX2 showed tannin tolerance ability up to 5 g/L. Moreover, five isolates showed antimicrobial activity against Eri silkworm pathogens, including Bacillus cereus, Staphylococcus aureus, and Proteus vulgaris, with E. hirae SX2 having the highest inhibitory effect. Supplementation of live E. hirae SX2 on castor leaves significantly improved the weight and reduced the silkworm mortality when compared with the control group (p < 0.05). This cocci LAB can be considered as the new probiotic for Eri culture. Additionally, this finding presented the perspective of non-mulberry silkworm that could also be used as the model for further applying to new trends of the sericulture industry.

18.
Nutrients ; 14(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35011101

ABSTRACT

This study aimed to investigate the protective effect of probiotics and synbiotics from traditional Thai fermented tea leaves (Miang) on dextran sulfate sodium (DSS)-induced colitis in mice, in comparison to sulfasalazine. C57BL/6 mice were treated with probiotics L. pentosus A14-6, CMY46 and synbiotics, L. pentosus A14-6 combined with XOS, and L. pentosus CMY46 combined with GOS for 21 days. Colitis was induced with 2% DSS administration for seven days during the last seven days of the experimental period. The positive group was treated with sulfasalazine. At the end of the experiment, clinical symptoms, pathohistological changes, intestinal barrier integrity, and inflammatory markers were analyzed. The probiotics and synbiotics from Miang ameliorated DSS-induced colitis by protecting body weight loss, decreasing disease activity index, restoring the colon length, and reducing pathohistological damages. Furthermore, treatment with probiotics and synbiotics improved intestinal barrier integrity, accompanied by lowing colonic and systemic inflammation. In addition, synbiotics CMY46 combined with GOS remarkedly elevated the expression of IL-10. These results suggested that synbiotics isolated from Miang had more effectiveness than sulfasalazine. Thereby, they could represent a novel potential natural agent against colonic inflammation.


Subject(s)
Colitis, Ulcerative/therapy , Plant Leaves/microbiology , Probiotics/administration & dosage , Synbiotics/administration & dosage , Tea/microbiology , Animals , Colitis, Ulcerative/chemically induced , Dextran Sulfate , Disease Models, Animal , Fermented Beverages/microbiology , Mice , Mice, Inbred C57BL , Probiotics/isolation & purification , Sulfasalazine/administration & dosage , Thailand
19.
J Appl Microbiol ; 132(4): 3277-3292, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34863013

ABSTRACT

AIM: Optimization of Candida albicans growth and biofilm formation is essential for understanding the recalcitrance of this pathogen to advance functional analysis on hospital tools and material surfaces. Optimization and quantification of biofilm have always been a challenge using the conventional one variable at a time (OVAT) method. The present study uses central composite design-based response surface methodology for optimization of conditions to induce growth and biofilm formation in Candida albicans on polystyrene microtiter plates. METHODS AND RESULTS: Statistical software package, Stat Soft®, STASTICA version 12.6 was used for data analysis. The variables considered in the design matrix were media pH, temperature, incubation period, shaker speed and inoculum size. A four-pronged quantification approach with XTT assay (cell viability), crystal violet assay (biofilm), calcofluor white assay and wet/dry weight measurements (cell mass) was used to understand different aspects of biofilm formation. Cell viability and cell mass were inversely related; however, biofilm was independent of these two factors. The study also highlighted the fact that foetal bovine serum does not significantly contribute to cell adhesion and in turn in vitro biofilm formation in some of the cultures. CONCLUSIONS: A high-throughput optimization of C. albicans growth and biofilm formation on polystyrene microplate has been developed and validated. SIGNIFICANCE AND IMPACT OF STUDY: This is a first time approach to optimize the interaction of parameters for C. albicans biofilm formation using RSM. Heterogeneity in growth conditions for local strains of C. albicans clinical isolates was observed. This microtiter plate-based method can be used for future screening of therapeutics for the control of C. albicans.


Subject(s)
Biofilms , Candida albicans , Culture Media , Polystyrenes
20.
Metabolites ; 11(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34822380

ABSTRACT

Purple corn (Zea mays L.) is native to the Andean region, but limited research has been performed about the potential metabolic variability when grown under Andean environmental conditions. This study was aimed at evaluating the phenolic and primary polar metabolites composition of purple corn (kernels and cobs) grown at two Peruvian Andean locations (lowland and highland) using targeted UHPLC (ultra-high-performance liquid chromatography) and untargeted GC-MS (gas chromatography mass spectrometry) metabolomic platforms, respectively. Changes in the physical characteristics and the in vitro bioactivity were also determined. Purple corn from the highland zone showed higher contents of ash, crude fiber, total phenolic contents, DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity, and α-amylase inhibitory activity in kernels, whereas increased levels of flavonoids (anthocyanins and quercetin derivatives) and ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] antioxidant capacity were observed in cobs in comparison to lowland samples. No effect of the Andean location was found on the α-glucosidase inhibitory activity relevant for hyperglycemia management, while yield-linked physical characteristics were high in purple corn grown at the lowland zone. Polar primary metabolites related to the carbohydrate (monosaccharides, sucrose, and d-sorbitol), amino acid (valine and alanine), and tricarboxylic acid cycle (succinic, fumaric, and aconitic acid) metabolism were higher in highland purple corn (cob and kernel) likely due to abiotic stress factors from the highland environment. This study provides the foundation for further breeding improvements at Andean locations.

SELECTION OF CITATIONS
SEARCH DETAIL
...