Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 36(2): 982-92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25443286

ABSTRACT

Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain's ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1-2, 3-6, 12-20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD(+)/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration.


Subject(s)
Aging/metabolism , CA1 Region, Hippocampal/metabolism , Animals , CA1 Region, Hippocampal/cytology , Glucose/metabolism , Glycogen/metabolism , Hypoglycemia/metabolism , In Vitro Techniques , Lactic Acid/metabolism , Lactic Acid/pharmacology , Mitochondria/metabolism , NAD/metabolism , Neurons/metabolism , Oxidation-Reduction , Oxygen Consumption , Rats, Inbred F344
2.
Neurobiol Dis ; 62: 469-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24184921

ABSTRACT

Prolonged hypoxia leads to irreversible loss of neuronal function and metabolic impairment of nicotinamide adenine dinucleotide recycling (between NAD(+) and NADH) immediately after reoxygenation, resulting in NADH hyperoxidation. We test whether the addition of nicotinamide (to enhance NAD(+) levels) or PARP-1 inhibition (to prevent consumption of NAD(+)) can be effective in improving either loss of neuronal function or hyperoxidation following severe hypoxic injury in hippocampal slices. After severe, prolonged hypoxia (maintained for 3min after spreading depression) there was hyperoxidation of NADH following reoxygenation, an increased soluble NAD(+)/NADH ratio, loss of neuronal field excitatory post-synaptic potential (fEPSP) and decreased ATP content. Nicotinamide incubation (5mM) 2h prior to hypoxia significantly increased total NAD(H) content, improved neuronal recovery, enhanced ATP content, and prevented NADH hyperoxidation. The nicotinamide-induced increase in total soluble NAD(H) was more significant in the cytosolic compartment than within mitochondria. Prolonged incubation with PJ-34 (>1h) led to enhanced baseline NADH fluorescence prior to hypoxia, as well as improved neuronal recovery, NADH hyperoxidation and ATP content on recovery from severe hypoxia and reoxygenation. In this acute model of severe neuronal dysfunction prolonged incubation with either nicotinamide or PJ-34 prior to hypoxia improved recovery of neuronal function, enhanced NADH reduction and ATP content, but neither treatment restored function when administered during or after prolonged hypoxia and reoxygenation.


Subject(s)
Hippocampus/metabolism , Hypoxia, Brain/drug therapy , NAD/metabolism , Neuroprotective Agents/therapeutic use , Niacinamide/therapeutic use , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Animals , Hippocampus/drug effects , Hippocampus/physiopathology , Hypoxia, Brain/metabolism , In Vitro Techniques , Male , Mitochondria/drug effects , Mitochondria/metabolism , NAD/analysis , Neurons/drug effects , Neurons/physiology , Rats , Rats, Inbred F344
3.
Front Pharmacol ; 3: 43, 2012.
Article in English | MEDLINE | ID: mdl-22470340

ABSTRACT

Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply.

4.
Neurobiol Dis ; 45(1): 177-87, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21854850

ABSTRACT

The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 µmol/g tissue at 4h vs. 3.5 µmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H.


Subject(s)
Glucose/metabolism , Glycogen/metabolism , Hippocampus/drug effects , Neurons/drug effects , Pyruvic Acid/pharmacology , Synaptic Transmission/drug effects , Adenosine Triphosphate/metabolism , Animals , Energy Metabolism/drug effects , Energy Metabolism/physiology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Hippocampus/physiopathology , NAD/metabolism , NADP/metabolism , Neurons/metabolism , Rats , Rats, Inbred F344 , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/physiology
5.
Aging Dis ; 2(3): 196-218, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22081793

ABSTRACT

As the nervous system ages, a variety of changes occur in metabolism supporting glial and neuronal function, resulting in greater susceptibility to disease conditions. Changes with aging in the metabolic unit (i.e., neurons, glial cells and blood vessels) have been reported to include alterations of vascular reactivity, impaired transport of critical substrates underlying metabolism, enhanced reactive oxygen species production and alterations in calcium signaling. Some diseases are focused on the elderly, particularly cerebral ischemia, cognitive limitations, iatrogenic hypoglycemia, malignant brain tumors (i.e., glioblastoma), and Alzheimer's disease, partly due to metabolic alterations with aging. These metabolic changes with aging are discussed in light of primary theories of aging of the brain, which include mitochondrial, calcium dysfunction and enhanced oxidative damage. Here we focus on metabolic changes with aging which can influence the susceptibility of the brain to ischemia and cognitive function. Lastly, we describe treatment possibilities for these abnormal responses to aging, particularly the topic of caloric/dietary restriction, and possible mechanisms underlying this treatment direction.

6.
J Biol Chem ; 283(9): 5389-401, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18174165

ABSTRACT

Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a critical role in neuronal signal transduction and synaptic plasticity. Here, we showed that this kinase was very susceptible to oxidative modulation. Treatment of mouse brain synaptosomes with H2O2, diamide, and sodium nitroprusside caused aggregation of CaMKII through formation of disulfide and non-disulfide linkages, and partial inhibition of the kinase activity. These CaMKII aggregates were found to associate with the post synaptic density. However, treatment of purified CaMKII with these oxidants did not replicate those effects observed in the synaptosomes. Using two previously identified potential mediators of oxidants in the brain, glutathione disulfide S-monoxide (GS-DSMO) and glutathione disulfide S-dioxide (GS-DSDO), we showed that they oxidized and inhibited CaMKII in a manner partly related to those of the oxidant-treated synaptosomes as well as the ischemia-elicited oxidative stress in the acutely prepared hippocampal slices. Interestingly, the autophosphorylated and activated CaMKII was relatively refractory to GS-DSMO- and GS-DSDO-mediated aggregation. Short term ischemia (10 min) caused a depression of basal synaptic response of the hippocampal slices, and re-oxygenation (after 10 min) reversed the depression. However, oxidation of CaMKII remained at above the pre-ischemic level throughout the treatment. Oxidation of CaMKII also prevented full recovery of CaMKII autophosphorylation after re-oxygenation. Subsequently, the high frequency stimulation-mediated synaptic potentiation in the hippocampal CA1 region was significantly reduced compared with the control without ischemia. Thus, ischemia-evoked oxidation of CaMKII, probably via the action of glutathione disulfide S-oxides or their analogues, may be involved in the suppression of synaptic plasticity.


Subject(s)
Brain Ischemia/enzymology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Glutathione Disulfide/analogs & derivatives , Hippocampus/enzymology , Oxidants/metabolism , Protein Kinase Inhibitors/metabolism , Synaptosomes/enzymology , Animals , Brain Ischemia/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Disulfides/metabolism , Glutathione Disulfide/metabolism , Hippocampus/pathology , Mice , Neuronal Plasticity/drug effects , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Phosphorylation , Protein Processing, Post-Translational/drug effects , Signal Transduction/drug effects , Synaptosomes/pathology
7.
Biochemistry ; 46(7): 1961-71, 2007 Feb 20.
Article in English | MEDLINE | ID: mdl-17249696

ABSTRACT

Disulfide S-monoxide (DSMO) and disulfide S-dioxide (DSDO) have been proposed as proximal mediators for the oxidant-mediated modification of proteins. These disulfide S-oxides (DSOs) derived from glutathione (GSH) and captopril (CPSH) were synthesized by iron- or methyltrioxorhenium (VII)-catalyzed oxidation of the thiols with H2O2. Treatment of mouse hippocampal extracts with [35S]GS-DSOs revealed that a large number of proteins were susceptible to thionylation; however, only a limited number of the them were detectable by the commonly used antibody against GS-associated proteins. Using protein kinase C (PKC) as a model, we found that DSOs derived from different thiols modified this kinase with different efficacy and specificity; for example, the inhibitory potency of the kinase was glutathione disulfide S-dioxide (GS-DSDO) (IC50, approximately 30 microM) > captopril disulfide S-dioxide (CPS-DSDO) (IC50, approximately 450 microM) > glutathione disulfide S-monoxide (GS-DSMO) and captopril disulfide S-monoxide (CPS-DSMO). The stoichiometries of thionylation of PKC beta mediated by [35S]GS-DSMO and [35S]GS-DSDO were approximately 1 and 5 mol/mol, respectively, and at least four glutathionylation sites were identified in the GS-DSDO-treated kinase. Modification of PKC by GS-DSDO and CPS-DSDO rendered the kinase very susceptible to limited proteolysis; the former preferentially caused the degradation of the catalytic and the latter the regulatory domain of the kinase. Furthermore, CPS-DSDO-mediated modification of PKC increased the autonomous kinase activity; this was not the case for GS-DSDO-mediated modification. Since DSOs of different oxidative states as well as those derived from different thiols exert different effects on a target protein, these molecules could cause distinct cellular responses if derived from endogenous cellular reactions or even if they arise from exogenous sources.


Subject(s)
Disulfides/pharmacology , Protein Kinase C/metabolism , Sulfones/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Animals , Captopril/chemistry , Catalysis , Disulfides/chemical synthesis , Disulfides/metabolism , Ferric Compounds , Glutathione/chemistry , Hippocampus/metabolism , Hydrogen Peroxide/chemistry , Hydrolysis , In Vitro Techniques , Mice , Organometallic Compounds , Oxidation-Reduction , Protein Kinase C beta , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/metabolism , Tissue Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...