Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 102(13): 137203, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-19392399

ABSTRACT

We compare experimental resistivity data on Ga1-xMnxAs films with theoretical calculations using a scaling theory for strongly disordered ferromagnets. The characteristic features of the temperature dependent resistivity can be quantitatively understood through this approach as originating from the close vicinity of the metal-insulator transition. However, accounting for thermal fluctuations is crucial for a quantitative description of the magnetic field induced changes in resistance. While the noninteracting scaling theory is in reasonable agreement with the data, we find clear evidence for interaction effects at low temperatures.

2.
Phys Rev Lett ; 99(22): 227205, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233322

ABSTRACT

We develop a quantitatively predictive theory for impurity-band ferromagnetism in the low-doping regime of Ga1-xMnxAs. We compare it with measurements of a series of samples whose compositions span the transition from paramagnetic insulating to ferromagnetic conducting behavior. The theoretical Curie temperatures depend sensitively on the local fluctuations in the Mn-hole binding energy, which originate from Mn disorder and As antisite defects. The experimentally determined hopping energy is an excellent predictor of the Curie temperature, in agreement with the theory.

3.
Phys Rev Lett ; 97(8): 087208, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-17026333

ABSTRACT

The band structure of a prototypical dilute magnetic semiconductor (DMS), Ga1-xMnxAs, is studied across the phase diagram via infrared and optical spectroscopy. We prove that the Fermi energy (EF) resides in a Mn-induced impurity band (IB). Specifically the changes in the frequency dependent optical conductivity [sigma1(omega)] with carrier density are only consistent with EF lying in an IB. Furthermore, the large effective mass (m*) of the carriers inferred from our analysis of sigma1(omega) supports this conclusion. Our findings demonstrate that the metal to insulator transition in this DMS is qualitatively different from other III-V semiconductors doped with nonmagnetic impurities. We also provide insights into the anomalous transport properties of Ga1-xMnxAs.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 1): 011306, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16907088

ABSTRACT

We have measured the flux of grains from a hole in the bottom of a shaken container of grains. We find that the peak velocity of the vibration, v max, controls the flux, i.e., the flux is nearly independent of the frequency and acceleration amplitude for a given value of v max. The flux decreases with increasing peak velocity and then becomes almost constant for the largest values of v max. The data at low peak velocity can be quantitatively described by a simple model, but the crossover to nearly constant flux at larger peak velocity suggests a regime in which the granular density near the container bottom is independent of the energy input to the system.

SELECTION OF CITATIONS
SEARCH DETAIL
...