Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Meas ; 45(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776947

ABSTRACT

Objective.Assessing signal quality is crucial for biomedical signal processing, yet a precise mathematical model for defining signal quality is often lacking, posing challenges for experts in labeling signal qualities. The situation is even worse in the free living environment.Approach.We propose to model a PPG signal by the adaptive non-harmonic model (ANHM) and apply a decomposition algorithm to explore its structure, based on which we advocate a reconsideration of the concept of signal quality.Main results.We demonstrate the necessity of this reconsideration and highlight the relationship between signal quality and signal decomposition with examples recorded from the free living environment. We also demonstrate that relying on mean and instantaneous heart rates derived from PPG signals labeled as high quality by experts without proper reconsideration might be problematic.Significance.A new method, distinct from visually inspecting the raw PPG signal to assess its quality, is needed. Our proposed ANHM model, combined with advanced signal processing tools, shows potential for establishing a systematic signal decomposition based signal quality assessment model.


Subject(s)
Photoplethysmography , Signal Processing, Computer-Assisted , Photoplethysmography/methods , Humans , Algorithms , Heart Rate/physiology , Quality Control , Male
2.
J Clin Sleep Med ; 17(2): 159-166, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32964831

ABSTRACT

STUDY OBJECTIVES: Polysomnography is the gold standard in identifying sleep stages; however, there are discrepancies in how technicians use the standards. Because organizing meetings to evaluate this discrepancy and/or reach a consensus among multiple sleep centers is time-consuming, we developed an artificial intelligence system to efficiently evaluate the reliability and consistency of sleep scoring and hence the sleep center quality. METHODS: An interpretable machine learning algorithm was used to evaluate the interrater reliability (IRR) of sleep stage annotation among sleep centers. The artificial intelligence system was trained to learn raters from 1 hospital and was applied to patients from the same or other hospitals. The results were compared with the experts' annotation to determine IRR. Intracenter and intercenter assessments were conducted on 679 patients without sleep apnea from 6 sleep centers in Taiwan. Centers with potential quality issues were identified by the estimated IRR. RESULTS: In the intracenter assessment, the median accuracy ranged from 80.3%-83.3%, with the exception of 1 hospital, which had an accuracy of 72.3%. In the intercenter assessment, the median accuracy ranged from 75.7%-83.3% when the 1 hospital was excluded from testing and training. The performance of the proposed method was higher for the N2, awake, and REM sleep stages than for the N1 and N3 stages. The significant IRR discrepancy of the 1 hospital suggested a quality issue. This quality issue was confirmed by the physicians in charge of the 1 hospital. CONCLUSIONS: The proposed artificial intelligence system proved effective in assessing IRR and hence the sleep center quality.


Subject(s)
Artificial Intelligence , Sleep Stages , Algorithms , Humans , Machine Learning , Reproducibility of Results , Sleep , Taiwan
3.
Sensors (Basel) ; 20(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260314

ABSTRACT

Based on the well-established biopotential theory, we hypothesize that the high frequency spectral information, like that higher than 100Hz, of the EEG signal recorded in the off-the-shelf EEG sensor contains muscle tone information. We show that an existing automatic sleep stage annotation algorithm can be improved by taking this information into account. This result suggests that if possible, we should sample the EEG signal with a high sampling rate, and preserve as much spectral information as possible.


Subject(s)
Algorithms , Electroencephalography/methods , Sleep Stages/physiology , Electromyography , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...