Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Phys ; 102022.
Article in English | MEDLINE | ID: mdl-37547053

ABSTRACT

The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.

2.
J Vis Exp ; (170)2021 04 26.
Article in English | MEDLINE | ID: mdl-33970126

ABSTRACT

Stentor coeruleus is a well-known model organism for the study of unicellular regeneration. Transcriptomic analysis of individual cells revealed hundreds of genes-many not associated with the oral apparatus (OA)-that are differentially regulated in phases throughout the regeneration process. It was hypothesized that this systemic reorganization and mobilization of cellular resources towards growth of a new OA will lead to observable changes in movement and behavior corresponding in time to the phases of differential gene expression. However, the morphological complexity of S. coeruleus necessitated the development of an assay to capture the statistics and timescale. A custom script was used to track cells in short videos, and statistics were compiled over a large population (N ~100). Upon loss of the OA, S. coeruleus initially loses the ability for directed motion; then starting at ~4 h, it exhibits a significant drop in speed until ~8 h. This assay provides a useful tool for the screening of motility phenotypes and can be adapted for the investigation of other organisms.


Subject(s)
Cell Tracking/standards , Regeneration/genetics , Animals
3.
ACS Macro Lett ; 10(9): 1151-1158, 2021 09 21.
Article in English | MEDLINE | ID: mdl-35549081

ABSTRACT

The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin-tubulin molar percentages (25-75, 50-50, and 75-25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50-50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.


Subject(s)
Actins , Cytoskeleton , Actins/metabolism , Cytoskeleton/metabolism , Elasticity , Microtubules/metabolism , Myosins/metabolism
4.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190167, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31884915

ABSTRACT

The phenomenon of ciliary coordination has garnered increasing attention in recent decades and multiple theories have been proposed to explain its occurrence in different biological systems. While hydrodynamic interactions are thought to dictate the large-scale coordinated activity of epithelial cilia for fluid transport, it is rather basal coupling that accounts for synchronous swimming gaits in model microeukaryotes such as Chlamydomonas. Unicellular ciliates present a fascinating yet understudied context in which coordination is found to persist in ciliary arrays positioned across millimetre scales on the same cell. Here, we focus on the ciliate Stentor coeruleus, chosen for its large size, complex ciliary organization, and capacity for cellular regeneration. These large protists exhibit ciliary differentiation between cortical rows of short body cilia used for swimming, and an anterior ring of longer, fused cilia called the membranellar band (MB). The oral cilia in the MB beat metachronously to produce strong feeding currents. Remarkably, upon injury, the MB can be shed and regenerated de novo. Here, we follow and track this developmental sequence in its entirety to elucidate the emergence of coordinated ciliary beating: from band formation, elongation, curling and final migration towards the cell anterior. We reveal a complex interplay between hydrodynamics and ciliary restructuring in Stentor, and highlight for the first time the importance of a ring-like topology for achieving long-range metachronism in ciliated structures. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Subject(s)
Cilia/physiology , Ciliophora/physiology , Regeneration , Ciliophora/growth & development
5.
J Phys Chem C Nanomater Interfaces ; 122(30): 17406-17412, 2018.
Article in English | MEDLINE | ID: mdl-31656549

ABSTRACT

Quantum dots are fluorescent nanoparticles with narrow-band, size-tunable, and long-lasting emission. Typical formulations used for imaging proteins in cells are hydrodynamically much larger than the protein targets, so it is critical to assess the impact of steric effects deriving from hydrodynamic size. This report analyzes a new class of quantum dots that have been engineered for minimized size specifically for imaging receptors in narrow synaptic junctions between neurons. We use fluorescence correlation spectroscopy and transmission electron microscopy to calculate the contributions of the crystalline core, organic coating, and targeting proteins (streptavidin) to the total hydrodynamic diameter of the probe, using a wide range of core materials with emission spanning 545-705 nm. We find the contributing thickness of standard commercial amphiphilic polymers to be ~8 to ~14 nm, whereas coatings based on the compact ligand HS-(CH2)11 - (OCH2CH2)4-OH contribute ~6 to ~9 nm, reducing the diameter by ~2 to ~5 nm, depending on core size. When the number of streptavidins for protein targeting is minimized, the total diameter can be further reduced by ~5 to ~11 nm, yielding a diameter of 13.8-18.4 nm. These findings explain why access to the narrow synapse derive primarily from the protein functionalization of commercial variants, rather than the organic coating layers. They also explain why those quantum dots with size around 14 nm with only a few streptavidins can access narrow cellular structures for neuronal labeling, whereas those >27 nm and a large number of streptavidins, cannot.

SELECTION OF CITATIONS
SEARCH DETAIL
...