Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(6): 2210-2220, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33502418

ABSTRACT

Fe32+δGe33As2 and Fe32+δ'Ge35-xPx are quasi-binary intermetallic compounds that possess a rare variant of intergrowth-type crystal structure, which is a combination of the column shaped Co2Al5 and MgFe6Ge6 structure type blocks. The compounds are antiferromagnets with the Néel temperatures around 125 K. Neutron powder diffraction experiments on the samples with δ≈ 0.1, δ'≈ 0.5 and x≈ 3 reveal commensurate magnetic ordering of low symmetry in both compounds and a non-monotonic change in the intensities of magnetic reflections. On the other hand, temperature dependence of the hyperfine fields obtained from 57Fe Mössbauer spectroscopy indicates a gradual, monotonic increase in local magnetic fields upon cooling. We interpret these results as a spin reorientation within the Co2Al5-type block of the crystal structure, with the possible formation of a non-collinear magnetic order at low temperatures. Between the compounds, the reorientation occurs at significantly different temperatures, however the resulting magnetic structures themselves are similar as well as the average values of the magnetic moments and the hyperfine fields.

2.
Phys Chem Chem Phys ; 22(32): 18025-18034, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32756633

ABSTRACT

A type-VII clathrate with a Eu2+ guest embedded into a Ni-P covalent framework, EuNi2P4, was synthesized by a standard two-stage ampoule synthesis and confirmed to crystallize in the orthorhombic space group Fddd with unit cell parameters a = 5.1829(1) Å, b = 9.4765(1) Å, and c = 18.9900(1) Å. A general technique for studying the lattice and magnetic properties of REE containing compounds is proposed. The temperature and field dependences of electrical resistivity ρ(T,H), magnetization M(T,H), magnetic susceptibility χ(T,H), heat capacity Cp(T), and unit cell parameters a(T), b(T), c(T), and volume V(T) were experimentally studied and analyzed at different pressures in the temperature range of 2-300 K. A cascade of anomalies in the studied dependences was identified and attributed to the magnetic phase transformation and peculiar lattice contributions at temperatures below 20 K. As a result of comparison with an isostructural clathrate SrNi2P4, the parameters of the magnetic and lattice contributions were determined. It is characteristic that the phase transition from the paramagnetic to the magnetically ordered state is not reflected in the temperature changes of the lattice parameters due to weak bonds between guest europium atoms and the Ni-P host matrix. We have constructed a tentative H-T phase diagram based on the M(T) and M(H) data, which includes 6 different phases. It is established that the anomalous lattice contribution to the clathrate heat capacity CTLS(T) appears due to the effect of two-level systems (TLS) in the Eu2+ subsystem on the thermodynamic properties of EuNi2P4. The values of TLS parameters as well as the parameters of the magnetic subsystem of the clathrate were determined.

3.
Dalton Trans ; 49(7): 2138-2144, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31994559

ABSTRACT

Heat capacity CP(T) and lattice parameters a(T), b(T) and c(T) of LuB44Si3.5 borosilicide are experimentally studied as a function of temperature in the range of 2-300 K. The results are compared with those of pseudo-isostructural LuB50 boride. At the lowest temperatures, it is shown that the CP(T) dependence of borosilicide changes linearly with temperature. This is attributed to the effect of glass-like behaviour of the heat capacity due to the disorder in the sublattice of non-metals. The presence of defects in the B-Si sublattice and the irregular form of the cages in the B-Si matrix, which are occupied by Lu3+ ions, lead to the formation of two-level systems (TLS) in the Lu3+ subsystem. The TLS make a characteristic bell-like low-temperature contribution to the heat capacity of borosilicide. We show that there is a wide temperature range (5-150 K) of negative thermal expansion of borosilicide, which is attributed to the influence of quasi-independent vibrations of Lu3+ ions in the cages of the borosilicide crystal structure.

4.
Dalton Trans ; 47(32): 11219-11225, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30051122

ABSTRACT

We performed an experimental study on thermal properties of the Sn18In6As21.5I8 clathrate by measuring temperature dependencies of its heat capacity (2-300 K) and thermal expansion (5-300 K). By comparing the results with those published previously for Sn-based clathrates Sn24P19.2I8, Sn20Zn4P20.8I8, and Sn17Zn7P22I8, we established that partial replacement of tin and phosphorus by heavier indium and arsenic, respectively, leads to lowering vibration frequencies in both host and guest substructures. Deviation of the observed thermal properties at low temperatures from those predicted by the Einstein-Debye model is caused by the Schottky-like contribution of two-level systems to heat capacity and thermal expansion. These systems form owing to transitions of guest atoms in non-spherical 24-vertex cages between stationary states with close energies.

5.
Phys Chem Chem Phys ; 19(40): 27725-27730, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28984324

ABSTRACT

The temperature dependencies of heat capacity, CP(T), and cubic unit cell parameter, a(T), were experimentally obtained in the range of 2-300 K for the compounds Sn24P19.2I8, Sn20Zn4P20.8I8, and Sn17Zn7P22I8, which belong to a family of type-I clathrates. The experimental data were analyzed in the frames of the Debye-Einstein approximation, further accounting for the contributions of positional disorder in the clathrate frameworks as well as those of defect modes arising from the distribution of guest atoms over unequal in energy but close in space positions inside the framework cages. By fitting the experimental data, the Debye and Einstein characteristic temperatures describing the dynamics of the framework and guest atoms, respectively, were obtained. Their analysis revealed peculiar dependencies of the characteristic temperatures upon the number of substituted zinc atoms and the concentration of vacancies in the framework, which are discussed in this paper.

6.
Dalton Trans ; 46(28): 9110-9117, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28664972

ABSTRACT

Temperature changes of the heat capacity and unit cell parameters of Sn24P19.4Br8 clathrate were experimentally determined in the temperature range of 2 to 300 K. The data obtained were analyzed using Debye-Einstein approximation and taking into account the impact of both disorder in the host matrix and the presence of vacancies in the framework. Anomalous negative contribution to the thermal expansion was revealed and related to the defect mode influence on the clathrate thermal properties as a result of vibrations of two-level systems (TLS). The guest atoms that have the opportunity to occupy spatially close yet energetically non-equivalent positions in the asymmetric environment of the host matrix atoms play a principal role in the TLS formation. The results are compared with those previously obtained for semiclathrate Ge31P15Se8.

7.
Inorg Chem ; 48(8): 3720-30, 2009 Apr 20.
Article in English | MEDLINE | ID: mdl-19281208

ABSTRACT

A new cationic clathrate I Si(46-x)P(x)Te(y) (6.6(1) < or = y < or = 7.5(1), x < or = 2y at 1375 K) was synthesized from the elements and characterized by X-ray powder diffraction, thermal analysis, scanning electron microscopy, wavelength dispersive X-ray spectroscopy (WDXS), neutron powder diffraction, and (31)P NMR spectroscopy. The thermal behaviors of the magnetic susceptibility and resistivity were investigated as well. Si(46-x)P(x)Te(y) reveals a wide homogeneity range due to the presence of vacancies in the tellurium guest positions inside the smaller cage of the clathrate I structure. The vacancy ordering in the structure of Si(46-x)P(x)Te(y) causes the change of space group from Pm3n (ideal clathrate I) to Pm3 accompanied by the redistribution of P and Si atoms over different framework positions. Neutron powder diffraction confirmed that P atoms preferably form a cage around the vacancy-containing tellurium guest position. Additionally, (31)P NMR spin-spin relaxation experiments revealed the presence of sites with different coordination of phosphorus atoms. Precise determination of the composition of Si(46-x)P(x)Te(y) by WDXS showed slight but noticeable deviation (x < or = 2y) of phosphorus content from the Zintl counting scheme (x = 2y). The compound is diamagnetic while resistivity measurements show activated behavior or that of heavily doped semiconductors. Thermal analysis revealed high stability of the investigated clathrate: Si(46-x)P(x)Te(y) melts incongruently at approximately 1460 K in vacuum and is stable in air against oxidation up to 1295 K.

8.
J Am Chem Soc ; 123(49): 12375-9, 2001 Dec 12.
Article in English | MEDLINE | ID: mdl-11734040

ABSTRACT

A new quasi-one-dimensional compound Ni(8)Bi(8)SI has been synthesized and its crystal structure determined from single-crystal X-ray diffraction data. The structure of Ni(8)Bi(8)SI consists of [(1)infinityNi(8)Bi(8)S] columns separated by iodine atoms. Conductivity and magnetic susceptibility measurements (down to 4.2 K) show that Ni(8)Bi(8)SI is a one-dimensional metal and exhibits Pauli paramagnetic properties. These observations are in good agreement with the results from electronic structure calculations. An analysis of the chemical bonding employing difference electron charge density maps reveals strong multicenter Ni-Bi bonds and pair Ni-S interactions within the [(1)infinityNi(8)Bi(8)S] columns. Only electrostatic interactions are inferred between the columns and iodine atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...