Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(11): e0277778, 2022.
Article in English | MEDLINE | ID: mdl-36417395

ABSTRACT

A major challenge in extracting high-quality DNA from bryophytes is the treatment of bryophyte material in the field. The existing and commonly used treatment methods in the field have several shortcomings. Natural drying methods can lead to DNA breaks. In addition, it is highly cumbersome to carry large quantities of silica gel in the field due to its weight and high risk of contamination among samples. In this study, we explored more convenient drying methods to treat bryophyte specimens and promote more efficient DNA recovery. The quantity and quality of genomic DNA extracted from every bryophyte species using different drying methods, including hot-air drying methods (150°C, 80°C, and 40°C), natural drying method, and silica gel drying method, were measured. Spectrophotometry, electrophoresis, and PCR amplification were performed to assess the effects of different drying methods. The results of total DNA purity, total DNA concentration, PCR success, and OD 260/230 ratios suggested that the hot-air drying (40-80°C) was the best method. The morphological comparison revealed that hot-air drying at 40°C and 80°C exerted no significant adverse effects on plant morphology and taxonomic studies. Thus, this method prevents rapid DNA degradation and silica gel pollution and saves the workforce from carrying large amounts of silica gel to the field. Several inexpensive devices, such as portable hairdryers, fan heaters, and electric blankets, are available that can be easily carried to the field for drying molecular specimens.


Subject(s)
Bryophyta , Silica Gel , Bryophyta/genetics , Desiccation/methods , Polymerase Chain Reaction , DNA
2.
Nat Commun ; 10(1): 1485, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940807

ABSTRACT

Mosses are a highly diverse lineage of land plants, whose diversification, spanning at least 400 million years, remains phylogenetically ambiguous due to the lack of fossils, massive early extinctions, late radiations, limited morphological variation, and conflicting signal among previously used markers. Here, we present phylogenetic reconstructions based on complete organellar exomes and a comparable set of nuclear genes for this major lineage of land plants. Our analysis of 142 species representing 29 of the 30 moss orders reveals that relative average rates of non-synonymous substitutions in nuclear versus plastid genes are much higher in mosses than in seed plants, consistent with the emerging concept of evolutionary dynamism in mosses. Our results highlight the evolutionary significance of taxa with reduced morphologies, shed light on the relative tempo and mechanisms underlying major cladogenic events, and suggest hypotheses for the relationships and delineation of moss orders.


Subject(s)
Bryophyta/classification , Bryophyta/genetics , Cell Nucleus/genetics , Genome, Plant , Genome, Plastid , Phylogeny , Plastids/genetics , Evolution, Molecular , Exons
3.
PLoS One ; 14(2): e0211017, 2019.
Article in English | MEDLINE | ID: mdl-30759110

ABSTRACT

Biogeography, systematics and taxonomy are complementary scientific disciplines. To understand a species' origin, migration routes, distribution and evolutionary history, it is first necessary to establish its taxonomic boundaries. Here, we use an integrative approach that takes advantage of complementary disciplines to resolve an intriguing scientific question. Populations of an unknown moss found in the Canary Islands (Tenerife Island) resembled two different Californian endemic species: Orthotrichum shevockii and O. kellmanii. To determine whether this moss belongs to either of these species and, if so, to explain its presence on this distant oceanic island, we combined the evaluation of morphological qualitative characters, statistical morphometric analyses of quantitative traits, and molecular phylogenetic inferences. Our results suggest that the two Californian mosses are conspecific, and that the Canarian populations belong to this putative species, with only one taxon thus involved. Orthotrichum shevockii (the priority name) is therefore recognized as a morphologically variable species that exhibits a transcontinental disjunction between western North America and the Canary Islands. Within its distribution range, the area of occupancy is limited, a notable feature among bryophytes at the intraspecific level. To explain this disjunction, divergence time and ancestral area estimation analyses are carried out and further support the hypothesis of a long-distance dispersal event from California to Tenerife Island.


Subject(s)
Bryopsida/classification , Evolution, Molecular , Phylogeny , California , Classification , Phylogeography , Sequence Analysis, DNA , Spain
4.
Proc Natl Acad Sci U S A ; 103(3): 637-42, 2006 Jan 17.
Article in English | MEDLINE | ID: mdl-16407098

ABSTRACT

The common cushion moss Grimmia laevigata (Bridel) Bridel grows on bare rock in a broad range of environments on every continent except Antarctica. As such, it must harbor adaptations to a remarkably broad set of environmental stresses, the extremes of which can include very high temperatures, prolonged nearly complete desiccation, and high ultraviolet B (UVB) exposure. Yet, like many mosses, G. laevigata shows very little morphological variability across its cosmopolitan range. This presents an evolutionary puzzle, the solution to which lies in understanding the phylogeographic structure of this morphologically simple organism. Here we report the results of an analysis of amplified fragment length polymorphisms (AFLPs) in G. laevigata, focusing on individuals from the California Floristic Province. We found evidence that populations within California constitute two distinct geographically overlapping cryptic species. Each clade harbors multiple private alleles, indicating they have been genetically isolated for some time. We suggest that the existence of cryptic species within G. laevigata, in combination with its life history, growth habits, and extreme desiccation tolerance, makes this moss an ideal research tool and a candidate for a biological indicator of climate change and pollution.


Subject(s)
Bryopsida/classification , Bryopsida/physiology , Dehydration , Bryopsida/genetics , California , DNA, Plant/genetics , Environment , Genetic Markers , Geography , Nevada , Oregon , Polymerase Chain Reaction , Polymorphism, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...