Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833898

ABSTRACT

This review is devoted to the problems of the common features linking metabolic disorders and type 2 diabetes with the development of Alzheimer's disease. The pathogenesis of Alzheimer's disease closely intersects with the mechanisms of type 2 diabetes development, and an important risk factor for both pathologies is aging. Common pathological mechanisms include both factors in the development of oxidative stress, neuroinflammation, insulin resistance, and amyloidosis, as well as impaired mitochondrial dysfunctions and increasing cell death. The currently available drugs for the treatment of type 2 diabetes and Alzheimer's disease have limited therapeutic efficacy. It is important to note that drugs used to treat Alzheimer's disease, in particular acetylcholinesterase inhibitors, show a positive therapeutic potential in the treatment of type 2 diabetes, while drugs used in the treatment of type 2 diabetes can also prevent a number of pathologies characteristic for Alzheimer's disease. A promising direction in the search for a strategy for the treatment of type 2 diabetes and Alzheimer's disease may be the creation of complex multi-target drugs that have neuroprotective potential and affect specific common targets for type 2 diabetes and Alzheimer's disease.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Diabetes Mellitus, Type 2/metabolism , Acetylcholinesterase/metabolism , Mitochondria/metabolism , Oxidative Stress
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895970

ABSTRACT

Tubulin-targeting agents attract undiminished attention as promising compounds for the design of anti-cancer drugs. Verubulin is a potent tubulin polymerization inhibitor, binding to colchicine-binding sites. In the present work, a series of verubulin analogues containing a cyclohexane or cycloheptane ring 1,2-annulated with pyrimidine moiety and various substituents in positions 2 and 4 of pyrimidine were obtained and their cytotoxicity towards cancer and non-cancerous cell lines was estimated. The investigated compounds revealed activity against various cancer cell lines with IC50 down to 1-4 nM. According to fluorescent microscopy data, compounds that showed cytotoxicity in the MTT test disrupt the normal cytoskeleton of the cell in a pattern similar to that for combretastatin A-4. The hit compound (N-(4-methoxyphenyl)-N,2-dimethyl-5,6,7,8-tetrahydroquinazolin-4-amine) was encapsulated in biocompatible nanocontainers based on Ca2+ or Mg2+ cross-linked alginate and it was demonstrated that its cytotoxic activity was preserved after encapsulation.

3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768345

ABSTRACT

A series of novel organotin(IV) complexes on the base of 2-(N-3',5'-di-tert-butyl-4'-hydroxyphenyl)-iminomethylphenol (L) of formulae Me2SnBr2(L)2 (1), Bu2SnCl2(L)2(2), Ph2SnCl2(L) (3), Ph2SnCl2(L)2 (4) Ph3SnBr(L)2 (5) were synthesized and characterized by 1H, 13C, 119Sn NMR, IR, ESI-MS and elemental analysis. The crystal structures of initial L and complex 2 were determined by XRD method. It was found that L crystallizes in the orthorhombic syngony. The distorted octahedron geometry around Sn center is observed in the structure of complex 2. Intra- and inter-molecular hydrogen bonds were found in both structures. The antioxidant activity of new complexes as reducing agents, radical scavengers and lipoxygenase inhibitors was estimated spectrophotometrically in CUPRAC and DPPH tests (compounds 1 and 5 were found to be the most active in both methods), and in the process of enzymatic oxidation in vitro of linoleic acid under the action of lipoxygenase LOX 1-B (EC50 > 33.3 µM for complex 2). Furthermore, compounds 1-5 have been investigated for their antiproliferative activity in vitro towards HCT-116, MCF-7 and A-549 and non-malignant WI-38 human cell lines. Complexes 2 and 5 demonstrated the highest activity. The plausible mechanisms of the antiproliferative activity of compounds, including the influence on the polymerization of Tb+MAP, are discussed. Some of the synthesized compounds have also actively induced apoptosis and blocked proliferation in the cell cycle G2/M phase.


Subject(s)
Antineoplastic Agents , Organotin Compounds , Humans , Antioxidants/pharmacology , Organotin Compounds/pharmacology , Organotin Compounds/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Crystallography, X-Ray , Antineoplastic Agents/pharmacology
4.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430413

ABSTRACT

The development of multi-target-directed ligands (MTDLs) would provide effective therapy of neurodegenerative diseases (ND) with complex and nonclear pathogenesis. A promising method to create such potential drugs is combining neuroactive pharmacophoric groups acting on different biotargets involved in the pathogenesis of ND. We developed a synthetic algorithm for the conjugation of indole derivatives and methylene blue (MB), which are pharmacophoric ligands that act on the key stages of pathogenesis. We synthesized hybrid structures and performed a comprehensive screening for a specific set of biotargets participating in the pathogenesis of ND (i.e., cholinesterases, NMDA receptor, mitochondria, and microtubules assembly). The results of the screening study enabled us to find two lead compounds (4h and 4i) which effectively inhibited cholinesterases and bound to the AChE PAS, possessed antioxidant activity, and stimulated the assembly of microtubules. One of them (4i) exhibited activity as a ligand for the ifenprodil-specific site of the NMDA receptor. In addition, this lead compound was able to bypass the inhibition of complex I and prevent calcium-induced mitochondrial depolarization, suggesting a neuroprotective property that was confirmed using a cellular calcium overload model of neurodegeneration. Thus, these new MB-cycloalkaneindole conjugates constitute a promising class of compounds for the development of multitarget neuroprotective drugs which simultaneously act on several targets, thereby providing cognitive stimulating, neuroprotective, and disease-modifying effects.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Cholinesterase Inhibitors/pharmacology , Methylene Blue/pharmacology , Ligands , Alzheimer Disease/metabolism , Receptors, N-Methyl-D-Aspartate , Calcium/metabolism , Cholinesterases/metabolism
5.
Sci Rep ; 12(1): 12766, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896565

ABSTRACT

All forms of dementia including Alzheimer's disease are currently incurable. Mitochondrial dysfunction and calcium alterations are shown to be involved in the mechanism of neurodegeneration in Alzheimer's disease. Previously we have described the ability of compound Tg-2112x to protect neurons via sequestration of mitochondrial calcium uptake and we suggest that it can also be protective against neurodegeneration and development of dementia. Using primary co-culture neurons and astrocytes we studied the effect of Tg-2112x and its derivative Tg-2113x on ß-amyloid-induced changes in calcium signal, mitochondrial membrane potential, mitochondrial calcium, and cell death. We have found that both compounds had no effect on ß-amyloid or acetylcholine-induced calcium changes in the cytosol although Tg2113x, but not Tg2112x reduced glutamate-induced calcium signal. Both compounds were able to reduce mitochondrial calcium uptake and protected cells against ß-amyloid-induced mitochondrial depolarization and cell death. Behavioral effects of Tg-2113x on learning and memory in fear conditioning were also studied in 3 mouse models of neurodegeneration: aged (16-month-old) C57Bl/6j mice, scopolamine-induced amnesia (3-month-old mice), and 9-month-old 5xFAD mice. It was found that Tg-2113x prevented age-, scopolamine- and cerebral amyloidosis-induced decrease in fear conditioning. In addition, Tg-2113x restored fear extinction of aged mice. Thus, reduction of the mitochondrial calcium uptake protects neurons and astrocytes against ß-amyloid-induced cell death and contributes to protection against dementia of different ethology. These compounds could be used as background for the developing of a novel generation of disease-modifying neuroprotective agents.


Subject(s)
Alzheimer Disease , Neurotoxicity Syndromes , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Calcium/metabolism , Disease Models, Animal , Extinction, Psychological , Fear , Mice , Mice, Inbred C57BL , Mice, Transgenic , Scopolamine Derivatives
6.
Arch Pharm (Weinheim) ; 355(5): e2100425, 2022 May.
Article in English | MEDLINE | ID: mdl-35103336

ABSTRACT

A series of novel antimitotic agents was designed using the replacement of heterocyclic cores in two tubulin-targeting lead molecules with the acylated 4-aminoisoxazole moiety. Target compounds were synthesized via heterocyclization of ß-aryl-substituted vinylketones by tert-butyl nitrite in the presence of water as a key step. 4-Methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1aa) was found to stimulate partial depolymerization of microtubules of human lung carcinoma A549 cells at a high concentration of 100 µM and to totally inhibit cell growth (IC50 = 0.99 µM) and cell viability (IC50 = 0.271 µM) in the nanomolar to submicromolar concentration range. These data provide evidence of the multitarget profile of the cytotoxic action of compound 1aa. The SAR study demonstrated that the 3,4,5-trimethoxyphenyl residue is the key structural parameter determining the efficiency both towards tubulin and other molecular targets. The cytotoxicity of 3-methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1ab) to the androgen-sensitive human prostate adenocarcinoma cancer cell line LNCaP (IC50 = 0.301 µM) was approximately one order of magnitude higher than that to the conditionally normal cells lines WI-26 VA4 (IC50 = 2.26 µM) and human umbilical vein endothelial cells (IC50 = 5.58 µM) and significantly higher than that to primary fibroblasts (IC50 > 75 µM).


Subject(s)
Antimitotic Agents , Antineoplastic Agents , Neoplasms , Antimitotic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation , Endothelial Cells/metabolism , Humans , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/pharmacology
7.
Molecules ; 26(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576998

ABSTRACT

A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer's disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure-activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced ß-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.


Subject(s)
Amantadine/chemistry , Amantadine/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Amantadine/analogs & derivatives , Animals , Butyrylcholinesterase/chemistry , Carboxylesterase/chemistry , Catalytic Domain , Cell Line , Cholinesterase Inhibitors/chemical synthesis , Horses , Humans , Kinetics , Ligands , Memantine/chemistry , Memantine/pharmacology , Mitochondrial Transmembrane Permeability-Driven Necrosis/drug effects , Molecular Docking Simulation , Propidium/chemistry , Rats , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Swine , Tubulin/drug effects , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
8.
Med Res Rev ; 41(2): 803-827, 2021 03.
Article in English | MEDLINE | ID: mdl-32687230

ABSTRACT

The mitochondria-targeting drugs can be conventionally divided into the following groups: those compensating for the energy deficit involved in neurodegeneration, including stimulants of mitochondrial bioenergetics and activators of mitochondrial biogenesis; and neuroprotectors, that are compounds increasing the resistance of mitochondria to opening of mitochondrial permeability transition (MPT) pores. Although compensating for the energy deficit and inhibition of MPT are obvious targets for drugs used in the very early stages of Alzheimer-like pathology, but their use as the monotherapy for patients with severe symptoms is unlikely to be sufficiently effective. It would be optimal to combine targets that would provide the cognitive-stimulating, the neuroprotective effects and the ability to affect specific disease-forming mechanisms. In the design of such drugs, assessment of their potential mitochondrial-targeted effects is of particular importance. The possibility of targeted drug design for simultaneous action on mitochondrial and neurotransmitter's receptors targets is, in particularly, based on the known interplay of various cellular pathways and the presence of common structural components. Of particular interest is directed search for multitarget drugs that would act simultaneously on mitochondrial calcium-dependent functions, the targets (receptors, enzymes, etc.) facilitating neurotransmission, and the molecular targets related to the action of so-called disease-modifying factors, in particular, the formation and overcoming of the toxicity of ß-amyloid or hyperphosphorylated tau protein. The examples of such approaches realized on the level of preclinical and clinical trials are presented below.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Humans , Mitochondria , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
9.
Sci Rep ; 7: 45627, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358144

ABSTRACT

A new group of compounds, promising for the design of original multitarget therapeutic agents for treating neurodegenerative diseases, based on conjugates of aminoadamantane and carbazole derivatives was synthesized and investigated. Compounds of these series were found to interact with a group of targets that play an important role in the development of this type of diseases. First of all, these compounds selectively inhibit butyrylcholinesterase, block NMDA receptors containing NR2B subunits while maintaining the properties of MK-801 binding site blockers, exert microtubules stabilizing properties, and possess the ability to protect nerve cells from death at the calcium overload conditions. The leading compound C-2h has been shown the most promising effects on all analyzed parameters. Thus, these compounds can be regarded as promising candidates for the design of multi-target disease-modifying drugs for treatment of AD and/or similar neuropathologies.


Subject(s)
Alzheimer Disease/drug therapy , Amantadine/pharmacology , Carbazoles/pharmacology , Memantine/pharmacology , Alzheimer Disease/metabolism , Amantadine/analogs & derivatives , Carbazoles/chemistry , Carboxylesterase/antagonists & inhibitors , Cholinesterase Inhibitors/pharmacology , Drug Design , Erythrocytes/drug effects , Erythrocytes/metabolism , Humans , Memantine/analogs & derivatives , Microtubules/drug effects , Microtubules/metabolism , Microtubules/ultrastructure , Molecular Docking Simulation , Protein Binding , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...