Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 203(2): 508-519, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24750120

ABSTRACT

Histidine plays a crucial role in nickel (Ni) translocation in Ni-hyperaccumulating plants. Here, we investigated its role in zinc (Zn) translocation in four accessions of the Zn hyperaccumulator, Noccaea caerulescens, using the related non-hyperaccumulator, Thlaspi arvense, as a reference. We compared the effects of exogenous histidine supply on Zn xylem loading, and of Zn-histidine complex formation on Zn uptake in energized tonoplast vesicles. The Zn distribution patterns over root tissues were also compared. Exogenous histidine supply enhanced Zn xylem loading in all the N. caerulescens accessions, but decreased it in T. arvense. Zn distribution patterns over root tissues were similar, apart from the accumulation in cortical and endodermal cells, which was much lower in N. caerulescens than in T. arvense. Zn uptake in energized tonoplast vesicles was inhibited significantly in N. caerulescens, but not affected significantly in T. arvense, when Zn was supplied in combination with histidine in a 1:2 molar ratio. Histidine-mediated Zn xylem loading seems to be a species-wide character in N. caerulescens. It may well have evolved as a component trait of the hyperaccumulation machinery for Zn, rather than for Ni.


Subject(s)
Brassicaceae/metabolism , Xylem/metabolism , Zinc/pharmacokinetics , Brassicaceae/drug effects , Histidine , Ion Transport , Organometallic Compounds , Plant Leaves/metabolism , Plant Roots/metabolism , Species Specificity , Thlaspi/drug effects , Thlaspi/metabolism , Tissue Distribution , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...