Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(23): e2207802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36892170

ABSTRACT

Identifying and removing microplastics (MPs) from the environment is a global challenge. This study explores how the colloidal fraction of MPs assemble into distinct 2D patterns at aqueous interfaces of liquid crystal (LC) films with the goal of developing surface-sensitive methods for identifying MPs. Polyethylene (PE) and polystyrene (PS) microparticles are measured to exhibit distinct aggregation patterns, with addition of anionic surfactant amplifying differences in PS/PE aggregation patterns: PS changes from a linear chain-like morphology to a singly dispersed state with increasing surfactant concentration whereas PE forms dense clusters at all surfactant concentrations. Statistical analysis of assembly patterns using deep learning image recognition models yields accurate classification, with feature importance analysis confirming that dense, multibranched assemblies are unique features of PE relative to PS. Microscopic characterization of LC ordering at the microparticle surfaces leads to predict LC-mediated interactions (due to elastic strain) with a dipolar symmetry, a prediction consistent with the interfacial organization of PS but not PE. Further analysis leads to conclude that PE microparticles, due to their polycrystalline nature, possess rough surfaces that lead to weak LC elastic interactions and enhanced capillary forces. Overall, the results highlight the potential utility of LC interfaces for rapid identification of colloidal MPs based on their surface properties.

2.
J Phys Chem Lett ; 8(7): 1610-1614, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28326786

ABSTRACT

A facile and green mechanosynthesis strategy free of solvent and high reaction temperature was developed to fabricate highly emissive cesium lead halide perovskite (CsPbX3) quantum dots (QDs). Their composition can be adjusted conveniently simply through mechanically milling/grinding stoichiometric combinations of raw reagents, thereby introducing a broad luminescence tunability of the product with adjustable wavelength, line width, and photoluminescence quantum yield. Desired CsPbX3 QDs "library" can thus be readily constructed in a way like assembling Lego building blocks. Hence, the method offered new avenues in the preparation of multicomponent cocrystals, adding one appealing apparatus to the tool box of perovskite-type QDs synthesis. Intriguingly, photoinduced dynamic study revealed the hole-transfer process of the as-prepared QDs toward electron donors, indicative of their potential in charge-transfer-based applications such as light-harvesting devices and photocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...