Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 476: 134974, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38905973

ABSTRACT

Despite the growing prevalence of nanoplastics in drinking water distribution systems, the collective influence of nanoplastics and background nanoparticles on biofilm formation and microbial risks remains largely unexplored. Here, we demonstrate that nano-sized polystyrene modified with carboxyl groups (nPS) and background magnetite (nFe3O4) nanoparticles at environmentally relevant concentrations can collectively stimulate biofilm formation and prompt antibiotic resistance. Combined exposure of nPS and nFe3O4 by P. aeruginosa biofilm cells stimulated intracellular reactive oxidative species (ROS) production more significantly compared with individual exposure. The resultant upregulation of quorum sensing (QS) and c-di-GMP signaling pathways enhanced the biosynthesis of polysaccharides by 50 %- 66 % and increased biofilm biomass by 36 %- 40 % relative to unexposed control. Consistently, biofilm mechanical stability (measured as Young's modulus) increased by 7.2-9.1 folds, and chemical stress resistance (measured with chlorine disinfection) increased by 1.4-2.0 folds. For P. aeruginosa, the minimal inhibitory concentration of different antibiotics also increased by 1.1-2.5 folds after combined exposure. Moreover, at a microbial community-wide level, metagenomic analysis revealed that the combined exposure enhanced the multi-species biofilm's resistance to chlorine, enriched the opportunistic pathogenic bacteria, and promoted their virulence and antibiotic resistance. Overall, the enhanced formation of biofilms (that may harbor opportunistic pathogens) by nanoplastics and background nanoparticles is an overlooked phenomenon, which may jeopardize the microbial safety of drinking water distribution systems.

2.
Water Res ; 260: 121919, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38901313

ABSTRACT

Owing to the persistence and increasingly stringent regulations of perfluoroalkyl substances (PFAS), it is necessary to improve their adsorption capacities using activated carbon (AC). However, their adsorption capacities are suppressed by dissolved organic matter (DOM). In this study, two ACs modified with organic silicon (C-OS) and inorganic silicon (C-IS) were synthesized and used for the adsorption of PFAS in raw water (RW). The results showed that the PFAS adsorption capacity of C-IS was much less influenced by DOM than that of the original AC (C-virgin). In RW, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) adsorption capacities on C-IS were 15.08 and 3.65 times higher than those on C-virgin, respectively. DOM had less influence on the PFOA and PFOS adsorption kinetics of C-IS than C-OS and C-virgin. Under multi-PFAS condition, C-IS also exhibited slower desorption of short-chain PFAS and breakthrough in batch and column tests, respectively. Characterization of the ACs before and after adsorption and independent gradient modelling indicated that hydrogen bond interactions between the O-Si of C-IS and the -COOH or -CSO3H groups of PFAS contributed to PFAS adsorption. Density functional theory calculations demonstrated that the adsorption energy of C-IS was much lower than that of C-OS and C-virgin. The arrangement of PFAS molecules on C-OS was chaotic owing to the hydrophobic siloxane chain, whereas the arrangement of PFAS on C-IS was orderly in multi-layer or semi-micelle status and more favorable to PFAS adsorption. This study provides a new strategy for avoiding adverse effects of DOM on PFAS adsorption.

3.
Water Res ; 255: 121429, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38503184

ABSTRACT

Given the complexity of dissolved organic matter (DOM) and its interactions with coagulant chemicals, the mechanisms of DOM removal by aluminum (Al) coagulants remains a significant unknown. In this study, six test waters containing DOM with molecular weight (MW, <1 kDa, 1-10 kDa and >10 kDa) and hydrophobicity (hydrophilic, transphilic and hydrophobic) were prepared and coagulated with Al0, Al13 and Al30. The molecular-level characteristics of DOM molecules that were removed or resistant to removal by Al species were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that at the molecular level, saturated and reduced tannins and lignin-like compounds containing abundant carboxyl groups exhibited higher coagulation efficiency. Unsaturated and oxidized lipids, protein-like, and carbohydrates compounds were relatively resistant to Al coagulation due to their higher polarity and lower content of carboxyl groups. Al13 removed molecules across a wider range of molecular weights than Al0 and Al30, thus the DOC removal efficiency of Al13 was the highest. This study furthers the understanding of interactions between Al species and DOM, and provides scientific insights on the operation of water treatment plants to improve control of DOM.

4.
Water Res ; 254: 121339, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38432003

ABSTRACT

Loose deposit particles in drinking water distribution system commonly exist as mixtures of metal oxides, organic materials, bacteria, and extracellular secretions. In addition to their turbidity-causing effects, the hazards of such particles in drinking water are rarely recognized. In this study, we found that trace per- and polyfluoroalkyl substances (PFASs) could dramatically promote the formation of disinfection byproducts (DBPs) by triggering the release of particle-bound organic matter. Carboxylic PFASs have a greater ability to increase chloroacetic acid than sulfonic PFASs, and PFASs with longer chains have a greater ability to increase trichloromethane release than shorter-chain PFASs. Characterization by organic carbon and organic nitrogen detectors and Fourier transform ion cyclotron resonance mass spectrometry revealed that the released organic matter was mainly composed of proteins, carbohydrates, lignin, and condensed aromatic structures, which are the main precursors for the formation of DBPs, particularly highly toxic aromatic DBPs. After the release of organic matter, the particles exhibit a decrease in surface functional groups, an increase in surface roughness, and a decrease in particle size. The findings provide new insights into the risks of loose deposits and PFASs in drinking water, not only on PFASs per se but also on its effect of increasing toxic DBPs.


Subject(s)
Disinfectants , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Disinfectants/analysis , Drinking Water/analysis , Water Purification/methods , Halogenation , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 924: 171606, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38492600

ABSTRACT

Aluminum-containing deposits are pervasive in drinking water distribution systems (DWDSs). However, the mechanisms driving dissolved Al transformation to pipe deposits remain elusive. This study investigated dissolved Al accumulation in DWDSs by batch experiments and long-term pipe experiments using actual finished water. PVC pipe experiments showed that dissolved Al hardly deposited on clean PVC pipe walls at alkaline pH. However, it could be substantially anchored by the pipe surface covered with Mn and Fe deposits formed from Mn(II) oxidation and Fe(III) precipitation. Batch experiments verified that the synthesized Mn and Fe oxides exhibited a strong capacity for dissolved Al uptake at pH 7.7 and 9.0 (dissolved Al was the dominant form). Biofilms on pipe walls also enhanced dissolved Al accumulation. Iron pipe experiments showed that corroded iron pipes with abundant iron corrosion products readily accumulated Al. Compared to chlorination and chloramination, non-disinfected conditions were more favorable for particulate Al deposition on iron pipe surface, probably due to Al immobilization by biofilms. In addition, continuous Al accumulation in iron pipes enhanced Fe release to pipe water. This study highlighted the important role of metal oxides in dissolved Al accumulation in DWDSs with abundant Mn and Fe solids, which provided new insights into deposit formation and control strategies.

6.
Sci Total Environ ; 920: 171001, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38365033

ABSTRACT

Manganese(II) (Mn(II)) and bromide (Br-) are common in natural waters. This study investigated the effect of in-situ Mn(II) oxidation and preformed MnOx on the brominated trihalomethane (Br-THM) formation during chlorination of bromide-containing waters. The results showed Br-THM formation could be substantially inhibited by in-situ Mn(II) oxidation, but the addition of preformed MnOx had limited influence on Br-THM formation during chlorination of bromide-containing waters. Analysis of bromine species showed that about 30 % bromine species were incorporated into the MnOx particles and formed MnOx-Br during the in-situ Mn(II) oxidation process. Consequently, the availability of reactive bromine species for the reaction with dissolved organic matter (DOM) reduced, leading to less Br-THM formation. X-ray diffraction (XRD) analysis of in-situ Mn(II) oxidation product indicated the presence of Br- decreased the crystallinity of Mn oxides, verifying the bromine species entered MnOx crystal. However, the adsorptive uptake of bromine species by preformed MnOx was negligible and had no impact on Br-THM formation. Inhibition rate of Mn(II) oxidation on THM formation decreased with increasing specific ultraviolet absorbance (SUVA254) value of filtered water, showing SUVA254 could be a good indicator of DOM competition ability for oxidant with Mn(II). In addition, Excitation/Emission Matrix indicated that Mn(II) could form complexes with humic substances, which might also retard the reaction between humic substances and oxidant to form Br-THMs. This study highlighted the inhibiting effect of in-situ Mn(II) oxidation on Br-THM formation during chlorination of bromide-containing waters.

7.
Water Res ; 252: 121179, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38324986

ABSTRACT

The biofilm is important for the antibiotic resistance genes (ARGs) propagation in drinking water pipelines. This study investigated the influence of chlorine disinfection and ammonia nitrogen on the ARGs in pipelines biofilm using metagenomic and metabolomics analysis. Chlorine disinfection reduced the relative abundance of unclassified_c_Actinobacteria, Acidimicrobium, and Candidatus_Pelagibacter to 394-430 TPM, 114-123 TPM, and 49-54 TPM, respectively. Correspondingly, the ARGs Saur_rpoC_DAP, macB, and mfd was reduced to 8-12 TPM, 81-92 TPM and 30-35 TPM, respectively. The results of metabolomics suggested that chlorine disinfection suppressed the pathways of ABC transporters, fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, and biosynthesis of amino acids. These pathways were related to the cell membrane integrality and extracellular polymeric substances (EPS) secretion. Chlorine disinfection induced the decrease of EPS-related genes, resulting in the lower relative abundance of bacterial community and their antibiotic resistance. However, added approximately 0.5 mg/L NH3-N induced up-regulation of these metabolic pathways. In addition, NH3-N addition increased the relative abundance of enzymes related to inorganic and organic nitrogen metabolic pathway significantly, such as ammonia monooxygenase, glutamine synthetase, and glutamate synthase. Due to the EPS protection and nitrogen metabolism, the relative abundance of the main bacterial genera and the related ARGs increased to the level equal to that in pipelines biofilm with no disinfection. Therefore, NH3-N reduced the ARGs removal efficiency of chlorine disinfection. It is necessary to take measures to improve the removal rate of NH3-N and ARGs for preventing their risks in drinking water.


Subject(s)
Anti-Bacterial Agents , Drinking Water , Anti-Bacterial Agents/pharmacology , Sodium Hypochlorite , Ammonia , Chlorine/pharmacology , Bacteria/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , Disinfection/methods , Biofilms , Nitrogen
8.
Environ Sci Technol ; 58(3): 1763-1770, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258410

ABSTRACT

Control of residual Al is critical, owing to its high tendency to accumulate in drinking water distribution systems and its potential risks to human health. Herein, the effects of surface properties of activated carbon (AC) on intercepting different Al species (including monomeric Al and polymeric Al species-Al13) are evaluated. The results showed that Al in the form of monomers was considerably adsorbed by AC; whereas Al in the form of polymeric Al13 was held to a much lower degree by AC, and the effluent Al concentration was even higher than that without AC. By comparing virgin AC and hydrogen thermal treated AC, the surface oxygen functional groups on the AC were proposed to play a critical role in the transformation of Al species. The oxygen functional groups on the AC surface can directly form complexes with monomeric Al, thereby inducing the binding of monomeric Al on the AC surface. However, the AC surface oxygen groups could not bind to polymeric Al13, and the interaction between AC surface oxygen groups and polymeric Al13 partially transforms Al13 into monomeric Al species, which inhibited the self-aggregation of Al13. This study aims to provide new insights into the control of residual Al in water treatment plants to ensure drinking water safety.


Subject(s)
Drinking Water , Polymers , Humans , Aluminum Hydroxide , Charcoal , Oxygen
9.
Water Res ; 251: 121142, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38246084

ABSTRACT

MnOx deposits in distribution pipes can cause severe discoloration problems in drinking water. However, the impact of pipe materials on Mn(II) oxidation and MnOx accumulation remains unclear. This study investigated microbial-mediated Mn(II) oxidation and deposit formation through 300-day pipe loop experiments with corroded galvanized steel pipes (DN100) and new polyvinyl chloride (PVC) pipes (DN100). The results showed that influent Mn(II) was entirely oxidized within 48 h in the PVC pipes with biofilms in the absence of chlorine, while most influent Mn(II) remained unoxidized in the iron pipes. Dissolved oxygen (DO) monitoring showed that the DO in the PVC pipes was consistently higher than 8.0 mg/L, but that in the iron pipes dropped to 6.5 mg/L. Microbial analysis revealed that the abundance of potential Mn(II)-oxidizing bacteria in the low-DO iron pipes was less than that in the PVC pipes. Analysis of the Mn(II) concentration dynamics in different pipes revealed that the early Mn(II) disappearance in the iron pipes was contributed mainly to Mn(II) adsorption by iron corrosion products rather than microbial Mn(II) oxidation. When aeration was performed to increase the DO concentration to 8.0 mg/L in the iron pipes, complete Mn(II) oxidation occurred. This study provides insights into Mn(II) transformation in different pipes and highlights the critical role of DO in microbial Mn(II) oxidation in drinking water pipes.


Subject(s)
Drinking Water , Iron , Water Supply/methods , Oxidation-Reduction , Corrosion
10.
Water Res ; 247: 120822, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37950951

ABSTRACT

There are growing concerns over the effects of micropollutants on biofilms formation and antibiotic resistance gene (ARGs) transmission in drinking water distribution pipes. However, there was no reports about the influence of the interaction between extracellular polymeric substances (EPS) and corrosion products on biofilms formation. Our results indicated that the abundance of quorum sensing (QS)-related genes, polysaccharide and amino acids biosynthesis genes of EPS was 6747-8055 TPM, 2221-2619 TPM, and 1461-1535 TPM in biofilms of cast iron pipes, respectively, which were higher than that of stainless steel pipes. The two-dimensional correlation spectroscopy (2D-COS) analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) results indicated that polysaccharide of EPS was more easily adsorbed onto the corrosion products of cast iron pipes. Therefore, more human pathogenic bacteria (HPB) carrying ARGs were formed in biofilms of cast iron pipes. The amide I and amide II components and phosphate moieties of EPS were more susceptible to the corrosion products of stainless steel pipes. Thus, more bacteria genera carrying mobile genetic elements (MGE)-ARG were formed in biofilms of stainless steel pipes due to more abundance of QS-related genes, amino acids biosynthesis genes of EPS and the functional genes related to lipid metabolism. The enrichment of dimethyl phthalate (DMP), perfluorooctanoic acid (PFOA) and sulfadiazine (SUL) in corrosion products induced upregulation of QS and EPS-related genes, which promoted bacteria carrying different ARGs growth in biofilms, inducing more microbial risks.


Subject(s)
Extracellular Polymeric Substance Matrix , Stainless Steel , Humans , Corrosion , Biofilms , Bacteria/genetics , Polysaccharides , Iron/chemistry , Amides , Amino Acids
11.
Water Res ; 247: 120831, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37950955

ABSTRACT

Perfluoroalkyl substances (PFASs) and antibiotic resistance genes (ARGs) in drinking water are environmental issues that require special attention. The objective of this study was to know the effects of PFASs on microbial communities and their functional genes from source water to tap water. PFASs were detected by mass-labeled internal standards method, and the microbial communities and functional genes were analyzed by metagenomics. Our results indicated that the concentration of total PFASs in the water ranged from 47.7 to 171.4 ng/L, with perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) being the dominant types. The PFASs concentration decreased slowly from source to tap water in some months. PFBA, PFOA, perfluorooctane sulfonic acid (PFOS) and perfluorohexanoic acid (PFHxA) influenced the functional genes related to two-component system, bacterial secretion system and flagellar assembly of Aquabacterium, Methylobacterium, and Curvibacter, which contributed significantly to macB and evgS. Therefore, the bacterial communities enhanced adaptation to fluctuating environments by upregulating some functional genes under the PFASs stress, with concomitant changes in the expression of ARGs. Moreover, PFASs also promoted the expression of functional genes associated with human diseases, such as shigellosis and tuberculosis, which increased the risk of human pathogenicity. The bench scale experiment results also suggested that PFOA and PFOS in drinking water can promote the ARGs proliferation and induce microbial risk. Therefore, it is necessary to take measures to prevent the risks caused by PFASs and ARGs in drinking water.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
12.
Water Res ; 245: 120634, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37748342

ABSTRACT

Iron particles could catalyze disinfection by-product (DBP) formation in drinking water distribution systems (DWDS), but the catalytic effects of iron particles considering size effects have not been focused. Here, we first found that fine particles (lower than 10 µm) dominated the particle catalysis effect of the iron particles on the formation of DBPs containing multiple Cl atoms (DBP-3Cl), especially those with aromatic structure and containing multiple N atoms (DBP-3N). The loose deposit particles were filtered through 50 µm (F50), 10 µm (F10) and 1 µm (F10) membranes, and their turbidity values were 231.6, 53.4 and 1.1 NTU, respectively. In mass ratio, F50, F10 and F1 accounted for 84 %, 15 % and 1 % of unfiltered samples. Notably, the lower mass F10 generated more DBP-3Cl and DBP-3N than F50. Metal crystals and natural organic matters showed little difference among different sizes. The high catalytic activity of particles in F10 due to size effect was proved to be the essential mechanism. F1 contained few particles to affect DBP formation. In toxicity evaluation, the toxicity of F10 was even higher than F50. Therefore, fine particles with sizes lower than 10 µm may play a dominate role in the catalytic effect on DBP transformation in DWDS.

13.
Environ Sci Technol ; 57(30): 11251-11258, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37459399

ABSTRACT

Nitrogen-containing disinfection byproducts (N-DBPs) are highly toxic DBPs in drinking water. Though, under normal conditions, NO3- could not directly participate in disinfection reactions to generate N-DBPs, here, we first found that NO3- could promote the formation of N-DBPs in corroded iron drinking water pipes. The coexistence of corrosion produced Fe(II) and iron oxides is a critical condition for the transformation of N species; meanwhile, most of the newly generated N-DBPs had aromatic fractions. The Fe-O-C bond formed between iron corrosion products and natural organic matter promoted electron transfer for the N transformation with pyrrolic N as the intermediate N species. Density functional calculation confirmed that the coexistence of Fe(II) and iron oxides effectively reduced the Gibbs free energy for NO3- reduction. ΔG of the key rate-determining step from NO* to NOH* decreased from 1.55 eV on FeOOH to 1.35 eV on Fe(II)+FeOOH. In addition, the large decrease of cell viability of the water samples from 74.3% to 45.4% further confirmed the formation of highly toxic N-DBPs. Thus, in a drinking water distribution system with corroded iron pipes, the low toxic NO3- may increase toxicity risks via N-DBP formation.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection , Iron , Disinfectants/analysis , Disinfectants/chemistry , Nitrogen/analysis , Halogenation , Ferrous Compounds , Water Pollutants, Chemical/analysis
14.
Sci Total Environ ; 900: 165876, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37517737

ABSTRACT

Water cellars are traditional rainwater harvesting facilities that have been widely used in rural areas of northwest China. However, there are few reports about the water quality and health risk caused by the cellar water, especially phthalate esters (PAEs) and perfluoroalkyl substances (PFASs). This study investigated and assessed the health risks caused by the metals, PAEs, PFASs and bacterial communities in cellar water. The results showed that the turbidity and total number of bacterial colonies ranged from 4.7 to 58.5 NTU and 5-557 CFU/mL, respectively. The turbidity and total number of bacterial colonies were the main water quality problems. Due to high concentration of Tl (0.005-0.171 µg/L), the samples reached a high level of metal pollution. PAEs showed no non-carcinogenic and carcinogenic risk. The perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) were the main components of PFASs. PFOA and PFOS reached a moderate risk level in many cellar water samples. Moreover, Tl, Pb, As, PFBA and PFBS could change the bacterial community composition and induce the enrichment of bacterial functions related to human diseases. Besides these parameters, dissolved oxygen (DO) also affected the bacterial functions related to human diseases. Therefore, more attention should be paid to turbidity, DO, Tl, Pb, As, PFOA, PFOS, PFBA and PFBS in the cellar water. These results are meaningful for the water quality guarantee and health protection in rural areas of China.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Lead , Environmental Monitoring , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Water Quality , China , Esters
15.
Water Res ; 243: 120320, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37454460

ABSTRACT

To cope with the demand for good-quality potable water, household point-of-use (POU) facilities such as polypropylene cotton filters (PCFs) are widely used. However, the behaviors of new and used PCFs under discoloration are unclear. In this study, we found that new PCF did not effectively intercept particles under discoloration within the initial 5 d of inflow. In addition, the particles, especially the fine ones, accumulated in the long-used PCF exacerbated the risks of disinfection byproducts (DBPs) and microbes. The concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) in the effluent run through the PCF all increased over time; interestingly, all sharply increased after 5 d in accordance with the decrease in effluent iron particles. During this stage, maximum increases rate of 117.89% in THMs and 75.12% in HANs were observed. For haloacetic acids (HAAs), it served as the dominant contaminants, with concentrations approximately 10-fold greater than those of THMs and HANs. The increase showed that used PCFs could exacerbate the risks in DBPs exposure. Adenosine triphosphate (ATP) also showed a similar trend, with a maximum increase from 0.0033 to 0.0055 nmol/mL. Thus, PCFs can act only as pretreatment units and should be replaced after yellow water events. This study offers important guidance for PCF usage in drinking water purification, especially under discoloration.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection , Disinfectants/analysis , Water Pollutants, Chemical/analysis , Halogenation , Drinking Water/analysis , Trihalomethanes/analysis
16.
Sci Total Environ ; 896: 165282, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37406691

ABSTRACT

Polyvinyl chloride (PVC) pipes are widely used as drinking water distribution pipes in rural areas of China. However, whether phthalate acid esters (PAEs) released from PVC pipes will affect tap water quality is still unknown. The influence of released PAEs on the water quality was analysed in this study, especially after ClO2 disinfection. The results indicated that ClO2 disinfection could control the growth of total coliforms and heterotrophic bacteria (HPC). However, when the ClO2 residual decreased to below 0.10 mg/L, HPC and opportunistic pathogens, including Mycobacterium avium and Pseudomonas aeruginosa, increased significantly. In addition, after ClO2 disinfection, PAEs concentrations increased from 10.6-22.2 µg/L to 21.2-58.8 µg/L in different sampling cites. Linear discriminant analysis (LDA) effect size (LEfSe) and statistical analysis of metagenomic profiles (Stamp) showed that ClO2 disinfection induced the enrichment of Pseudomonas, Bradyrhizobium, and Mycobacterium and functions related to human diseases, such as pathogenic Escherichia coli infection, shigellosis, Staphylococcus aureus infection, and Vibrio cholerae infection. The released PAEs not only promoted the growth of these ClO2-resistant bacterial genera but also enhanced their functions related to human diseases. Moreover, these PAEs also induced the enrichment of other bacterial genera, such as Blastomonas, Dechloromonas, and Kocuria, and their functions, such as chronic myeloid leukaemia, African trypanosomiasis, leishmaniasis, hepatitis C and human T-cell leukaemia virus 1 infection. The released PAEs enhanced the microbial risk of the drinking water. These results are meaningful for guaranteeing water quality in rural areas of China.


Subject(s)
Chlorine Compounds , Disinfectants , Drinking Water , Humans , Disinfectants/pharmacology , Polyvinyl Chloride , Chlorine Compounds/pharmacology , Disinfection/methods , Bacteria , Esters , Chlorine/pharmacology
17.
J Hazard Mater ; 458: 131877, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37344241

ABSTRACT

Sufficient and sustainable manganese(II) removal is a challenging task to prevent Mn-related drinking water discoloration problems. This study investigated Mn(II) removal by granular activated carbon (GAC) filtration under various conditions. The results showed that biological GAC filter columns could reduce Mn(II) from 400 µg/L to 10 µg/L after a short ripening period, while sand filter columns did not show evident Mn(II) removal function. Water quality changes, pretreatment with NaClO and chemogenic MnOx coating on GAC media surface did not influence the Mn(II) removal capacity of GAC filter columns. 16S rRNA gene sequencing showed that the abundance of potential Mn(II)-oxidizing bacteria in the GAC media was similar to that in the sand media. However, qPCR results indicated that GAC media colonized dramatically more biomass than sand media, resulting in highly effective Mn(II) removal by GAC filter columns. Under chlorinated conditions, GAC filtration underperformed sand filtration in Mn(II) removal, although activated carbon has been reported to be capable of catalyzing Mn(II) oxidation by chlorine. Fast chlorine decay in GAC filter columns made it hard to sustain chemical Mn(II) oxidation and thus led to less Mn(II) removal. This study highlighted the advantage of biological GAC filtration over sand filtration in Mn(II) removal.


Subject(s)
Water Pollutants, Chemical , Water Purification , Charcoal , RNA, Ribosomal, 16S , Chlorine/analysis , Filtration/methods , Oxidation-Reduction , Water Purification/methods , Water Pollutants, Chemical/analysis
18.
J Hazard Mater ; 445: 130637, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37056009

ABSTRACT

Extending the lifetime of granular activated carbon (GAC) filters with no significant loss in their effectiveness is a considerable challenge for drinking water supply utilities. However, the effects of residual Al from coagulants on GAC performance are rarely considered. Herein, in-service GAC samples obtained from full-scale water treatment plants were investigated to evaluate the amount of accumulated Al. Although the Al concentration in water was two to three times lower than the Ca concentration, Al exhibited considerable accumulation (second to Ca accumulation) in in-service GAC samples (0.68-8.63 mg g-1). Surface characterization results indicated that Al accumulation could have been caused by the co-precipitation of Al with Ca and Si to form Ca4Al2Si3O10·H2O and Ca4Al6O12SO4, self-precipitation or complexion with -OH/-COOH on the GAC or biofilm surfaces. Correlation analysis of the accumulated Al and GAC properties implied that Al accumulation considerably reduced the surface area of GAC by ∼30%. Lab simulation experiments indicated that the removal of dissolved organic matter was reduced by 6-10% when additional Al was loaded. In addition, results showed that the residual Al (up to 200 µg L-1) considerably affected the extracellular polymeric substance component and microorganism community structure. In summary, strict control of residual Al is beneficial for maintaining the efficacies of GAC and biologically activated carbon.

19.
J Hazard Mater ; 448: 130978, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36860083

ABSTRACT

The occurrence of microplastics (MPs) and even nanoplastics (NPs) in tap water has raised considerable attention. As a pre-treatment and also the most important process in drinking water treatment plants, coagulation has been widely studied to remove MPs, but few studies focused on the removal pattern and mechanism of NPs, especially no study paid attention to the coagulation enhanced by prehydrolysed Al-Fe bimetallic coagulants. Therefore, in this study, polymeric species and coagulation behaviour of MPs and NPs influenced by Fe fraction in polymeric Al-Fe coagulants were investigated. Special attention was given to the residual Al and the floc formation mechanism. The results showed that asynchronous hydrolysis of Al and Fe sharply decreases the polymeric species in coagulants and that the increase of Fe proportion changes the sulfate sedimentation morphology from dendritic to layered structures. Fe weakened the electrostatic neutralization effect and inhibited the removal of NPs but enhanced that of MPs. Compared with monomeric coagulants, the residual Al decreased by 17.4 % and 53.2 % in the MP and NP systems (p < 0.01), respectively. With no new bonds detected in flocs, the interaction between micro/nanoplastics and Al/Fe was merely electrostatic adsorption. According to the mechanism analysis, sweep flocculation and electrostatic neutralization were the dominant removal pathways of MPs and NPs, respectively. This work provides a better coagulant option for removing micro/nanoplastics and minimizing Al residue, which has promising potential for application in water purification.

20.
Environ Sci Technol ; 57(12): 4863-4869, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917752

ABSTRACT

Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant that is frequently detected throughout the drinking water supply system. Here, we first found that PFOA could significantly increase the formation of disinfection byproducts (DBPs) in unlined iron pipes (UIPs) during the distribution process. The increased DBPs were not due to the reaction of PFOA itself with free chlorine, but the in situ formed Fe-PFOA complex played a key role. Notably, PFOA could enhance iron release from UIPs and was greatly incorporated into the iron particles to form Fe-PFOA complex. The •OH generated by the Fe-PFOA heterogeneous reaction could break large dissolved organic matter into small molecules that had higher reactivity with chlorine. In addition, DBP precursors with more aromatic structures were favorable for forming strong Fe-π interactions with Fe-PFOA complex, resulting in more •OH for the formation of aromatic DBPs. The cytotoxicity test showed that the viability of cells exposed to DBPs from UIPs with 100 ng/L PFOA was 46.9%, while that without PFOA was 67.91%. Overall, this study provided a new perspective on the risk of PFOA, with a focus not on PFOA itself but on its potential to promote DBP-associated toxicity in iron-based drinking water distribution pipes.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Drinking Water/analysis , Drinking Water/chemistry , Disinfectants/analysis , Disinfectants/chemistry , Chlorine , Iron , Halogenation , Water Purification/methods , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...