Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Clin Oral Investig ; 28(7): 378, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884808

ABSTRACT

OBJECTIVES: Peri-implant diseases, being the most common implant-related complications, significantly impact the normal functioning and longevity of implants. Experimental models play a crucial role in discovering potential therapeutic approaches and elucidating the mechanisms of disease progression in peri-implant diseases. This narrative review comprehensively examines animal models and common modeling methods employed in peri-implant disease research and innovatively summarizes the in vitro models of peri-implant diseases. MATERIALS AND METHODS: Articles published between 2015 and 2023 were retrieved from PubMed/Medline, Web of Science, and Embase. All studies focusing on experimental models of peri-implant diseases were included and carefully evaluated. RESULTS: Various experimental models of peri-implantitis have different applications and advantages. The dog model is currently the most widely utilized animal model in peri-implant disease research, while rodent models have unique advantages in gene knockout and systemic disease induction. In vitro models of peri-implant diseases are also continuously evolving to meet different experimental purposes. CONCLUSIONS: The utilization of experimental models helps simplify experiments, save time and resources, and promote advances in peri-implant disease research. Animal models have been proven valuable in the early stages of drug development, while technological advancements have brought about more predictive and relevant in vitro models. CLINICAL RELEVANCE: This review provides clear and comprehensive model selection strategies for researchers in the field of peri-implant diseases, thereby enhancing understanding of disease pathogenesis and providing possibilities for developing new treatment strategies.


Subject(s)
Dental Implants , Disease Models, Animal , Peri-Implantitis , Animals , Humans , Dogs
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-923369

ABSTRACT

@#As a highly conserved signal pathway in evolution, the WNT signaling pathway plays an essential role in periodontium growth, development and injury repair. The Axin-associated protein Axin2 is a direct effector molecule of the WNT signaling pathway and labels WNT-responsive cells well. Studies have shown that Axin2-positive (Axin2+) cells in the periodontium have the potential for self-renewal, replication and multidirectional differentiation. This article reviews the temporal and spatial distribution of Axin2+ cells in periodontal tissue development and the role and regulatory mechanism of Axin2+ cells in periodontal tissue development, regeneration and tissue remodeling to provide new ideas for periodontal tissue regeneration. The literature review showed that Axin2+ cells were the main cell source of periodontium development, and Axin2+ cells played essential roles in tooth extraction socket healing, implant osseointegration, periodontal tissue remodeling and junctional epithelium regeneration. The function of Axin2+ cells was positively regulated by the canonical WNT signaling pathway. However, the regulatory mechanisms of other signaling pathways on Axin2+ cells remain to be elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL
...