Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2402457, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898691

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death worldwide. Patients often fail to recognize the early signs of CVDs, which display irregularities in cardiac contractility and may ultimately lead to heart failure. Therefore, continuously monitoring the abnormal changes in cardiac contractility may represent a novel approach to long-term CVD surveillance. Here, a zero-power consumption and implantable bias-free cardiac monitoring capsule (BCMC) is introduced based on the triboelectric effect for cardiac contractility monitoring in situ. The output performance of BCMC is improved over 10 times with nanoparticle self-adsorption method. This device can be implanted into the right ventricle of swine using catheter intervention to detect the change of cardiac contractility and the corresponding CVDs. The physiological signals can be wirelessly transmitted to a mobile terminal for analysis through the acquisition and transmission module. This work contributes to a new option for precise monitoring and early diagnosis of CVDs.

2.
ACS Sens ; 9(3): 1301-1309, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38373043

ABSTRACT

Continuous pulse wave detection can be used for monitoring and diagnosing cardiovascular diseases, and research on pulse sensing based on piezoelectric thin films is one of the hot spots. Usually, piezoelectric thin films do not come into direct contact with the skin and need to be connected through a layer of an elastic medium. Most views think that the main function of this layer of elastic medium is to increase the adhesion between the sensor component and the skin, but there is little discussion about the impact of the elastic medium on pulse vibration transmission. Here, we conducted a detailed study on the effects of Young's modulus and the thickness of elastic media on pulse sensing signals. The results show that the waveform amplitude of the piezoelectric sensing signal decreases with the increase of Young's modulus and thickness of the elastic medium. Then, we constructed a theoretical model of the influence of elastic media on pulse wave propagation. The amplitude of the pulse wave signal detected by the optimized sensor was increased to 480%. Our research shows that by regulating Young's modulus and thickness of elastic media, pulse wave signals can undergo a similar amplification effect, which has an important theoretical reference value for achieving ambulatory blood pressure monitoring based on high-quality pulse waves.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Elastomers , Signal-To-Noise Ratio , Elastic Modulus , Models, Theoretical
3.
Nat Commun ; 15(1): 507, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218947

ABSTRACT

Harvesting biomechanical energy from cardiac motion is an attractive power source for implantable bioelectronic devices. Here, we report a battery-free, transcatheter, self-powered intracardiac pacemaker based on the coupled effect of triboelectrification and electrostatic induction for the treatment of arrhythmia in large animal models. We show that the capsule-shaped device (1.75 g, 1.52 cc) can be integrated with a delivery catheter for implanting in the right ventricle of a swine through the intravenous route, which effectively converts cardiac motion energy to electricity and maintains endocardial pacing function during the three-week follow-up period. We measure in vivo open circuit voltage and short circuit current of the self-powered intracardiac pacemaker of about 6.0 V and 0.2 µA, respectively. This approach exhibits up-to-date progress in self-powered medical devices and it may overcome the inherent energy shortcomings of implantable pacemakers and other bioelectronic devices for therapy and sensing.


Subject(s)
Pacemaker, Artificial , Swine , Animals , Endocardium , Prostheses and Implants , Electricity , Heart Ventricles
4.
Bioact Mater ; 33: 251-261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38059123

ABSTRACT

Catalytic therapy based on piezoelectric nanoparticles has become one of the effective strategies to eliminate tumors. However, it is still a challenge to improve the tumor delivery efficiency of piezoelectric nanoparticles, so that they can penetrate normal tissues while specifically aggregating at tumor sites and subsequently generating large amounts of reactive oxygen species (ROS) to achieve precise and efficient tumor clearance. In the present study, we successfully fabricated tumor microenvironment-responsive assembled barium titanate nanoparticles (tma-BTO NPs): in the neutral pH environment of normal tissues, tma-BTO NPs were monodisperse and possessed the ability to cross the intercellular space; whereas, the acidic environment of the tumor triggered the self-assembly of tma-BTO NPs to form submicron-scale aggregates, and deposited in the tumor microenvironment. The self-assembled tma-BTO NPs not only caused mechanical damage to tumor cells; more interestingly, they also exhibited enhanced piezoelectric catalytic efficiency and produced more ROS than monodisperse nanoparticles under ultrasonic excitation, attributed to the mutual extrusion of neighboring particles within the confined space of the assembly. tma-BTO NPs exhibited differential cytotoxicity against tumor cells and normal cells, and the stronger piezoelectric catalysis and mechanical damage induced by the assemblies resulted in significant apoptosis of mouse breast cancer cells (4T1); while there was little damage to mouse embryo osteoblast precursor cells (MC3T3-E1) under the same treatment conditions. Animal experiments confirmed that peritumoral injection of tma-BTO NPs combined with ultrasound therapy can effectively inhibit tumor progression non-invasively. The tumor microenvironment-responsive self-assembly strategy opens up new perspectives for future precise piezoelectric-catalyzed tumor therapy.

6.
Biosensors (Basel) ; 13(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37232913

ABSTRACT

For outdoor workers or explorers who may be exposed to extreme or wild environments for a long time, wearable electronic devices with continuous health monitoring and personal rescue functions in emergencies could play an important role in protecting their lives. However, the limited battery capacity leads to a limited serving time, which cannot ensure normal operation anywhere and at any time. In this work, a self-powered multifunctional bracelet is proposed by integrating a hybrid energy supply module and a coupled pulse monitoring sensor with the inherent structure of the watch. The hybrid energy supply module can harvest rotational kinetic energy and elastic potential energy from the watch strap swinging simultaneously, generating a voltage of 69 V and a current of 87 mA. Meanwhile, with a statically indeterminate structure design and the coupling of triboelectric and piezoelectric nanogenerators, the bracelet enables stable pulse signal monitoring during movement with a strong anti-interference ability. With the assistance of functional electronic components, the pulse signal and position information of the wearer can be transmitted wirelessly in real-time, and the rescue light and illuminating light can be driven directly by flipping the watch strap slightly. The universal compact design, efficient energy conversion, and stable physiological monitoring demonstrate the wide application prospects of the self-powered multifunctional bracelet.


Subject(s)
Electric Power Supplies , Wearable Electronic Devices , Humans , Pulse , Heart Rate , Monitoring, Physiologic
7.
ACS Appl Mater Interfaces ; 14(17): 20122-20131, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35452218

ABSTRACT

A tactile sensor is the centerpiece in human-machine interfaces, enabling robotics or prosthetics to manipulate objects dexterously. Specifically, it is crucial to endow the sensor with the ability to detect and distinguish normal and shear forces in real time, so that slip detection and more complex control could be achieved during the interaction with objects. Here, a self-powered multidirectional force sensor (SMFS) based on triboelectric nanogenerators with a three-dimensional structure is proposed for sensing and analysis of normal and shear forces in real time. Four polydimethylsiloxane (PDMS) cylinders act as the force sensing structure of the SMFS. A flexible tip array made of carbon black/MXene/PDMS composites is used to generate triboelectric signals when the SMFS is driven by an external force. The SMFS can sense multidimensional force due to the adaptability of the PDMS cylinders and detect tiny force due to the sensitivity of the flexible tips. A small shear force as low as 50 mN could be recognized using the SMFS. The direction of the externally applied force could be recognized by analyzing the location and output voltage amplitude of the SMFS. Moreover, the tactile sensing applications, including reagent weighing and force direction perception, are also achieved by using the SMFS, which demonstrates the potential in promoting developments of self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotic applications.


Subject(s)
Robotics , Wearable Electronic Devices , Humans , Mechanical Phenomena , Touch
8.
Adv Mater ; 34(16): e2105416, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35103354

ABSTRACT

Self-healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self-healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self-healing ability, ultra-stretchability, and stable conductivity, even at -80 °C. The hydrogel is systematically optimized to improve a hydrogen-bonded network nanostructure, coordinated achieving a quick self-healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm-1 and anti-freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential-gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real-time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.


Subject(s)
Electronics , Hydrogels , Electric Conductivity , Hydrogels/chemistry , Ions , Nerve Fibers
9.
Small Methods ; 6(3): e2101529, 2022 03.
Article in English | MEDLINE | ID: mdl-35084114

ABSTRACT

Human-machine interfaces have penetrated various academia and industry fields such as smartphones, robotic, virtual reality, and wearable electronics, due to their abundant functional sensors and information interaction methods. Nevertheless, most sensors' complex structural design, monotonous parameter detection capability, and single information coding communication hinder their rapid development. As the frontier of self-powered sensors, the triboelectric nanogenerator (TENG) has multiple working modes and high structural adaptability, which is a potential solution for multi-parameter sensing and miniaturizing of traditional interactive electronic devices. Herein, a self-powered hybrid coder (SHC) based on TENG is reported to encode two action parameters of touch and press, which can be used as a smart interface for human-machine interaction. The top-down hollow structure of the SHC, not only constructs a compositing mode to generate stable touch and press signals but also builds a hybrid coding platform for generating action codes in synergy mode. When a finger touches or presses the SHC, Morse code and Gray code can be transmitted for text information or remote control of electric devices. This self-powered coder is of reference value for designing an alternative human-machine interface and having the potential to contribute to the next generation of highly integrated portable smart electronics.


Subject(s)
Electric Power Supplies , Robotics , Electronics , Humans , Touch
10.
Fundam Res ; 2(4): 619-628, 2022 Jul.
Article in English | MEDLINE | ID: mdl-38933997

ABSTRACT

Respiratory sensing provides a simple, non-invasive, and efficient way for medical diagnosis and health monitoring, but it relies on sensors that are conformal, accurate, durable, and sustainable working. Here, a stretchable, multichannel respiratory sensor inspired by the structure of shark gill cleft is reported. The bionic shark gill structure can convert transverse elastic deformation into longitudinal elastic deformation during stretching. Combining the optimized bionic shark gill structure with the piezoelectric and the triboelectric effect, the bionic shark gill respiratory sensor (BSG-RS) can produce a graded electrical response to different tensile strains. Based on this feature, BSG-RS can simultaneously monitor the breathing rate and breathing depth of the human body accurately, and realize the effective recognition of the different human body's breathing state under the supporting software. With good stretchability, wearability, accuracy, and long-term stability (50,000 cycles), BSG-RS is expected to be applied as self-powered smart wearables for mobile medical diagnostic analysis in the future.

11.
Biosens Bioelectron ; 194: 113609, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34509719

ABSTRACT

Wearable and implantable medical devices are playing more and more key roles in disease diagnosis and health management. Various biosensors and systems have been used for respiration monitoring. Among them, self-powered sensors have some special characteristics such as low-cost, easy preparation, highly designable, and diversified. The respiratory airflow can drive the self-powered sensors directly to convert mechanical energy of the airflow into electricity. One of the major goals of the self-powered sensors and systems is realizing health monitoring and diagnosis. The relationship between the output signals and the models of respiratory diseases has not been studied deeply and clearly. Therefore, how to find an accurate relationship between them is a challenging and significant research topic. This review summarized the recent progress of the self-powered respiratory sensors and systems from aspects of device principle, output property, detecting index and so on. The challenges and perspectives have also been discussed for reference to the researchers who are interested in the field of self-powered sensors.


Subject(s)
Biosensing Techniques , Electricity , Monitoring, Physiologic , Prostheses and Implants , Respiration
12.
Adv Mater ; 33(39): e2102302, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34369023

ABSTRACT

Bioresorbable electronics that can be absorbed and become part of the organism after their service life are a new trend to avoid secondary invasive surgery. However, the material limitation is a significant challenge. There are fewer biodegradable materials with pressure-sensitive properties. Here, a pressure sensor based on the triboelectric effect between bioabsorbable materials is reported. This effect is available in almost all materials. The bioresorbable triboelectric sensor (BTS) can directly convert ambient pressure changes into electrical signals. This device successfully identifies abnormal vascular occlusion events in large animals (dogs). The service life of the BTS reaches 5 days with a high service efficiency (5.95%). The BTS offers excellent sensitivity (11 mV mmHg-1 ), linearity (R2  = 0.993), and good durability (450 000 cycles). The antibacterial bioresorbable materials (poly(lactic acid)-(chitosan 4%)) for the BTS can achieve 99% sterilization. Triboelectric devices are expected to be applied in postoperative care as bioresorbable electronics.


Subject(s)
Absorbable Implants , Cardiovascular Diseases/surgery , Monitoring, Physiologic/instrumentation , Animals , Biocompatible Materials/chemistry , Cardiovascular Diseases/physiopathology , Dogs , Dyspnea/physiopathology , Electronics , Mice , Monitoring, Physiologic/methods , Polyesters/chemistry , Postoperative Care
13.
ACS Nano ; 15(6): 10130-10140, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34086454

ABSTRACT

Assessment of muscle function is an essential indicator for estimating elderly health, evaluating motor function, and instructing rehabilitation training, which also sets urgent requirements for mechanical sensors with superior quantification, accuracy, and reliability. To overcome the rigidity and vulnerability of traditional metallic electrodes, we synthesize an ionic hydrogel with large deformation tolerance and fast self-healing ability. And we propose a stretchable, self-healing, and skin-mounted (Triple S) active sensor (TSAS) based on the principles of electrostatic induction and electrostatic coupling. The skin modulus-matched TSAS provides outstanding sensing properties: maximum output voltage of 78.44 V, minimal detection limit of 0.2 mN, fast response time of 1.03 ms, high signal-to-noise ratio and excellent long-term service stability. In training of arm muscle, the functional signals of biceps and triceps brachii muscles as well as the joint dexterity of bending angle can be acquired simultaneously through TSAS. The signal can also be sent wirelessly to a terminal for analysis. With the characteristics of high sensitivity, reliability, convenience, and low-cost, TSAS shows its potential to be the next-generation procedure for real-time assessment of muscle function and rehabilitation training.


Subject(s)
Hydrogels , Skin , Aged , Humans , Muscles , Reproducibility of Results
14.
ACS Nano ; 14(7): 8074-8083, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32551540

ABSTRACT

Long-term and low-dose photodynamic therapy for treating tumors requires a sustainable energy supply. The power source technology of batteries and wireless charging for driving a light-emitting diode (LED) may cause inconveniences during treatment. In addition, the development of telemedicine and Internet medicine put forward higher demands on treatment methods, such as better patient compliance and autonomous management. Here, we show a self-powered photodynamic therapy (s-PDT) system with two different irradiation modes that can be autonomously managed by patients. The as-fabricated s-PDT system based on a twinning structured piezoelectric nanogenerator is powered by energy harvested from body motion and realizes effective tumor tissue killing and inhibition. As demonstrated at the cellular level, the s-PDT system can significantly suppress tumor cell growth with the pulsed light stimulation mode. When the miniature LED was implanted subcutaneously in mice with transplanted tumors, the s-PDT system led to significant antitumor effects by irradiation with intermittent continuous light stimulation mode for 12 days, and an 87.46% tumor inhibition rate was obtained. This innovative s-PDT system combined with two treatment modes may provide a great opportunity to develop wearable/implantable and self-controllable devices for long-term photodynamic therapy, which would be a promising method for clinical cancer treatment.


Subject(s)
Neoplasms , Photochemotherapy , Animals , Electric Power Supplies , Humans , Mice , Motion , Neoplasms/drug therapy
15.
ACS Nano ; 14(6): 6436-6448, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32459086

ABSTRACT

Implantable energy harvesters (IEHs) are the crucial component for self-powered devices. By harvesting energy from organisms such as heartbeat, respiration, and chemical energy from the redox reaction of glucose, IEHs are utilized as the power source of implantable medical electronics. In this review, we summarize the IEHs and self-powered implantable medical electronics (SIMEs). The typical IEHs are nanogenerators, biofuel cells, electromagnetic generators, and transcutaneous energy harvesting devices that are based on ultrasonic or optical energy. A benefit from these technologies of energy harvesting in vivo, SIMEs emerged, including cardiac pacemakers, nerve/muscle stimulators, and physiological sensors. We provide perspectives on the challenges and potential solutions associated with IEHs and SIMEs. Beyond the energy issue, we highlight the implanted devices that show the therapeutic function in vivo.


Subject(s)
Bioelectric Energy Sources , Pacemaker, Artificial , Electromagnetic Phenomena , Electronics, Medical , Prostheses and Implants
16.
J Mater Chem B ; 8(16): 3647-3654, 2020 04 29.
Article in English | MEDLINE | ID: mdl-31984984

ABSTRACT

Motion recognition and information interaction sensors with flexibility and stretchability are key functional modules as interactive media between the mechanical motions and electric signals in an intelligent robotic and rehabilitation training system. Nanogenerators have many useful applications in the field of intelligent interaction, with the advantages of a self-powered sensing ability, easy fabrication, considerable sensitivity and reliability. However, the singularity of the sensing mode limits its applications. Hence, in this research, a flexible and stretchable dual mode nanogenerator (FSDM-NG) for human motion sensing and information interaction, based on the integration of piezoelectric and triboelectric principles was developed. In piezoelectric mode, the FSDM-NG can effectively monitor the bending angle of joints (finger, wrist and elbow) from 30° to 90°. In triboelectric mode, text and logic information transfer are encoded using Morse code and logic gates, respectively. In addition, the device has good adhesion and biosafety, and is robust which makes it work normally even in under water environments. Combining these two sensing mechanisms, multiple modes of sensing from touch and stretch based on the FSDM-NG can be achieved for information interaction in real time. The proposed sensor has the potential to be adapted for more complex sensing, which may provide new applications for intelligent interaction of robots and in the rehabilitation training field.


Subject(s)
Adaptation, Physiological , Monitoring, Physiologic , Nanotechnology , Robotics , Wearable Electronic Devices , Humans , Monitoring, Physiologic/instrumentation , Nanotechnology/instrumentation , Particle Size , Surface Properties
17.
ACS Appl Mater Interfaces ; 11(48): 44933-44940, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31675212

ABSTRACT

High-throughput screening and fast identification of single bacterial cells are crucial for clinical diagnosis, bioengineering, and fermentation engineering. Although single-cell technologies have been developed extensively in recent years, the single-cell technologies for bacteria still need further exploration. In this study, we demonstrate an identification and screening technology for single bacterial cells based on a large-scale nanobowl array, which is well-ordered and size-adjustable for use with different kinds of bacteria. When the culture medium with monodispersed bacteria was placed on the nanobowl array, it successfully enabled loading of single bacterium into a single nanobowl. Because of the limitative size and depth of the nanobowls, mixture of different bacteria species could be screened according to their sizes. In addition, with the help of a low electrical current, the bacteria can be further screened according to their intrinsic surface charges. If combined with micromanipulation technology, high-throughput single bacterial selection can be achieved in future.


Subject(s)
Bacteria/isolation & purification , High-Throughput Screening Assays/methods , Nanotechnology/methods , Single-Cell Analysis/methods , Bacteria/chemistry , Bacteria/cytology , High-Throughput Screening Assays/instrumentation , Nanotechnology/instrumentation , Single-Cell Analysis/instrumentation , Surface Properties
18.
Nat Commun ; 10(1): 2695, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217422

ABSTRACT

Soft wearable electronics for underwater applications are of interest, but depend on the development of a waterproof, long-term sustainable power source. In this work, we report a bionic stretchable nanogenerator for underwater energy harvesting that mimics the structure of ion channels on the cytomembrane of electrocyte in an electric eel. Combining the effects of triboelectrification caused by flowing liquid and principles of electrostatic induction, the bionic stretchable nanogenerator can harvest mechanical energy from human motion underwater and output an open-circuit voltage over 10 V. Underwater applications of a bionic stretchable nanogenerator have also been demonstrated, such as human body multi-position motion monitoring and an undersea rescue system. The advantages of excellent flexibility, stretchability, outstanding tensile fatigue resistance (over 50,000 times) and underwater performance make the bionic stretchable nanogenerator a promising sustainable power source for the soft wearable electronics used underwater.


Subject(s)
Electric Power Supplies , Nanotechnology/methods , Remote Sensing Technology/instrumentation , Wearable Electronic Devices , Animals , Biomimetic Materials/chemistry , Cell Membrane/chemistry , Dimethylpolysiloxanes/chemistry , Electrophorus , Humans , Ion Channels/chemistry , Molecular Structure , Movement , Nanoparticles/chemistry , Oceans and Seas , Rescue Work , Tensile Strength , Wireless Technology
19.
ACS Nano ; 13(5): 6017-6024, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31083973

ABSTRACT

The human body has an abundance of available energy from the mechanical movements of walking, jumping, and running. Many devices such as electromagnetic, piezoelectric, and triboelectric energy harvesting devices have been demonstrated to convert body mechanical energy into electricity, which can be used to power various wearable and implantable electronics. However, the complicated structure, high cost of production/maintenance, and limitation of wearing and implantation sites restrict the development and commercialization of the body energy harvesters. Here, we present a body-integrated self-powered system (BISS) that is a succinct, highly efficient, and cost-effective method to scavenge energy from human motions. The biomechanical energy of the moving human body can be harvested through a piece of electrode attached to skin. The basic principle of the BISS is inspired by the comprehensive effect of triboelectrification between soles and floor and electrification of the human body. We have proven the feasibility of powering electronics using the BISS in vitro and in vivo. Our investigation of the BISS exhibits an extraordinarily simple, economical, and applicable strategy to harvest energy from human body movements, which has great potential for practical applications of self-powered wearable and implantable electronics in the future.


Subject(s)
Electromagnetic Phenomena , Nanotechnology/trends , Prostheses and Implants , Wearable Electronic Devices , Electric Power Supplies , Electronics , Humans , Motion
20.
Nat Commun ; 10(1): 1821, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015519

ABSTRACT

Self-powered implantable medical electronic devices that harvest biomechanical energy from cardiac motion, respiratory movement and blood flow are part of a paradigm shift that is on the horizon. Here, we demonstrate a fully implanted symbiotic pacemaker based on an implantable triboelectric nanogenerator, which achieves energy harvesting and storage as well as cardiac pacing on a large-animal scale. The symbiotic pacemaker successfully corrects sinus arrhythmia and prevents deterioration. The open circuit voltage of an implantable triboelectric nanogenerator reaches up to 65.2 V. The energy harvested from each cardiac motion cycle is 0.495 µJ, which is higher than the required endocardial pacing threshold energy (0.377 µJ). Implantable triboelectric nanogenerators for implantable medical devices offer advantages of excellent output performance, high power density, and good durability, and are expected to find application in fields of treatment and diagnosis as in vivo symbiotic bioelectronics.


Subject(s)
Arrhythmia, Sinus/surgery , Electrophysiological Phenomena , Heart/physiology , Nanomedicine/instrumentation , Pacemaker, Artificial , Animals , Arrhythmia, Sinus/etiology , Cardiac Surgical Procedures/instrumentation , Cardiac Surgical Procedures/methods , Cell Line , Dimethylpolysiloxanes/chemistry , Disease Models, Animal , Equipment Design , Male , Mice , Nanomedicine/methods , Nylons/chemistry , Polytetrafluoroethylene/chemistry , Prosthesis Implantation/instrumentation , Prosthesis Implantation/methods , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...