Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38728208

ABSTRACT

A Gram-stain-negative and rod-shaped bacterium, designated strain CY04T, was isolated from a sediment sample collected from the Yellow Sea. CY04T exhibited the highest 16S rRNA gene sequence similarity of 98.7 % to Zongyanglinia huanghaiensis CY05T, followed by the similarities of 98.6 %, 98.0 and 98.0 % to Zongyanglinia marina DSW4-44T, Parasedimentitalea marina W43T and Parasedimentitalea psychrophila QS115T respectively. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on genome sequences revealed that CY04T formed a robust cluster with Z. huanghaiensis CY05T, Z. marina DSW4-44T, P. marina W43T and P. psychrophila QS115T. Calculated digital DNA-DNA hybridisation and average nucleotide identity values between CY04T and its closely related species were 22.2-23.7 % and 79.0-81.2 % respectively. Cells of CY04T were strictly aerobic, non-motile and positive for catalase, oxidase and denitrification. CY04T harboured a set of genes encoding the enzymes involved in denitrification. Growth occurred at 10-30 °C (optimum, 20 °C), at pH 6.5-9.5 (optimum, pH 8.0) and with 1-6 % (w/v) (optimum, 2.5 %,) NaCl. The major component of the fatty acids was summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The isoprenoid quinone was Q-10. Results of the phenotypic, chemotaxonomic and molecular study indicate that strain CY04T represents a novel species of the genus Parasedimentitalea, for which the name Parasedimentitalea denitrificans sp. nov. is proposed. The type strain is CY04T (=MCCC 1K08635T=KCTC 62199T). It is also proposed that Zongyanglinia huanghaiensis and Zongyanglinia marina should be reclassified as Parasedimentitalea huanghaiensis comb. nov. and Parasedimentitalea maritima nom. nov. An emended description of the genus Parasedimentitalea is also proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Denitrification , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Geologic Sediments/microbiology , China , Seawater/microbiology , Ubiquinone
2.
Gene ; 905: 148219, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38286267

ABSTRACT

OBJECTIVE: To examine the therapeutic mechanism of astragaloside IV (AS-IV) in the management of retinal ganglion cell (RGC) injury induced by high glucose (HG), a comprehensive approach involving the integration of network pharmacology and conducting in vitro and in vivo experiments was utilized. METHODS: A rat model of diabetic retinopathy (DR) injury was created by administering streptozotocin through intraperitoneal injection. Additionally, a model of RGC injury induced by HG was established using a glucose concentration of 0.3 mmol/mL. Optical coherence tomography (OCT) images were captured 8 weeks after the injection of AS-IV. AS-IV and FBS were added to the culture medium and incubated for 48 h. The viability of cells was assessed using a CCK-8 assay, while the content of reactive oxygen species (ROS) was measured using DCFH-DA. Apoptosis was evaluated using Annexin V-PI. To identify the targets of AS-IV, hyperglycemia, and RGC, publicly available databases were utilized. The Metascape platform was employed for conducting GO and KEGG enrichment analyses. The STRING database in conjunction with Cytoscape 3.7.2 was used to determine common targets of protein-protein interactions (PPIs) and to identify the top 10 core target proteins in the RGC based on the MCC algorithm. qRT-PCR was used to measure the mRNA expression levels of the top10 core target proteins in RGCs. RESULTS: OCT detection indicated that the thickness of the outer nucleus, and inner and outer accessory layers of the retina increased in the AS-IV treated retina compared to that in the DM group but decreased compared to that in the CON group. Coculturing RGC cells with AS-IV after HG induction resulted in a significant increase in cell viability and a decrease in ROS and apoptosis, suggesting that AS-IV can reduce damage to RGC cells caused by high glucose levels by inhibiting oxidative stress. There were 14 potential targets of AS-IV in the treatment of RGC damage induced by high glucose levels. The top 10 core target proteins identified by the MCC algorithm were HIF1α, AKT1, CTNNB1, SMAD2, IL6, SMAD3, IL1ß, PPARG, TGFß1, and NOTCH3. qRT-PCR analysis showed that AS-IV could upregulate the mRNA expression levels of SMAD3, TGF-ß1, and NOTCH3, and downregulate the mRNA expression levels of HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß in high glucose-induced RGC cells. CONCLUSION: The findings of this study validate the efficacy of astragaloside IV in the treatment of DR and shed light on the molecular network involved. Specifically, HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß were identified as the crucial candidate molecules responsible for the protective effects of astragaloside IV on RGCs.


Subject(s)
Diabetic Retinopathy , Retinal Ganglion Cells , Saponins , Triterpenes , Rats , Animals , Retinal Ganglion Cells/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/genetics , Glucose/pharmacology , Glucose/metabolism , Computational Biology , RNA, Messenger/metabolism
3.
Biomed Rep ; 2(5): 664-670, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25054008

ABSTRACT

The aim of the present study was to identify the differentially-expressed genes of embryonic day 14 (ED 14) rat liver in comparison to adult rat liver, which may provide specific information for the investigation of the hepatogenesis mechanism. The gene expression profiles of ED 14 and adult rat livers were investigated using microarray analysis (the Illumina RatRef-12 Expression BeadChip). Quantitative polymerase chain reaction (qPCR) analyses were conducted to confirm the gene expression. There were 787 genes upregulated in the embryonic liver. Based on the gene ontology classification system, which was analyzed by the database for annotation, visualization and integrated discovery software, a number of the upregulated genes were categorized into the distinct and differentially-expressed functional groups, including metabolism pathway, cell cycle, transcription, signal transduction, purine metabolism, cell structure, transportation and apoptosis. qPCR analyses confirmed the gene expression. Eleven upregulated genes were found in the ED 14 rat liver, which may provide specific information for the understanding of the molecular mechanisms that control hepatogenesis. These overexpressed genes are potential markers for identifying hepatic progenitor cells.

4.
Int J Mol Sci ; 14(9): 17680-93, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23994834

ABSTRACT

The purpose of this study was to investigate the possible protective effect of N-acetylserotonin (NAS) against acute hepatic ischemia-reperfusion (I/R) injury in mice. Adult male mice were randomly divided into three groups: sham, I/R, and I/R + NAS. The hepatic I/R injury model was generated by clamping the hepatic artery, portal vein, and common bile duct with a microvascular bulldog clamp for 30 min, and then removing the clamp and allowing reperfusion for 6 h. Morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Activated caspase-3 expression was evaluated by immunohistochemistry and Western blot. The activation of aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD) was evaluated by enzyme-linked immunosorbent assay (ELISA). The data show that NAS rescued hepatocyte morphological damage and dysfunction, decreased the number of apoptotic hepatocytes, and reduced caspase-3 activation. Our work demonstrates that NAS ameliorates hepatic IR injury.


Subject(s)
Liver/drug effects , Liver/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Serotonin/analogs & derivatives , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Blotting, Western , Caspase 3/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Liver/injuries , Male , Malondialdehyde/blood , Mice , Serotonin/therapeutic use , Superoxide Dismutase/blood
5.
Int J Clin Exp Pathol ; 6(7): 1245-60, 2013.
Article in English | MEDLINE | ID: mdl-23826406

ABSTRACT

Wnt5a, a member of the Wnt gene family, encodes a cysteine-rich growth factor involved in signal transduction during growth and differentiation. The Fzd2 gene codes for a cell membrane receptor called Frizzled-2 have a structure similar to G protein coupled receptors. The extracellular N-terminal of the Fzd2 receptor has a cysteine-rich domain (CRD) that binds Wnt ligands and thus primes the Wnt signal pathway. Downregulation of the Wnt signal pathway occurs in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). However, little is known about Wnt5a/Fzd2 signaling in mammalian nerve cells, and it is not clear whether Wnt5a or Fzd2 functioning are changed in ALS. The influence of Wnt5a and Fzd2 signal transduction pathway on ALS was investigated in adult SOD1(G93A) transgenic mice. Changes in Wnt5a and Fzd2 expression in the spinal cord of SOD1(G93A) transgenic mice (ALS), SOD1(G93A) transfected NSC-34 cells, and primary cultures of astrocytes from SOD1(G93A) transgenic mice were detected by immunofluorescent staining, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The results provide further insight into the role of Wnt5a and Fzd2 in the pathogenesis of ALS transgenic mice, which provides evidence that should help in the search for treatments of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Frizzled Receptors/metabolism , Spinal Cord/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Amyotrophic Lateral Sclerosis/genetics , Animals , Astrocytes/metabolism , Cells, Cultured , Disease Models, Animal , Frizzled Receptors/genetics , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Time Factors , Transfection , Wnt Proteins/genetics , Wnt-5a Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...