Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 11(9): 2258-2270, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38439663

ABSTRACT

CH3NH3PbI3 has shown great potential for photodetectors and photovoltaic devices due to its excellent positive response to visible light. However, its real-time response characteristics hinder its application in optical memory and logic operation; moreover, the presence of excessive PbI2 is a double-edged sword. Herein, we constructed a dual-terminal device using a single CH3NH3PbI3 micro/nanowire with two Ag electrodes, and then in situ introduced PbI2 quantum dots (QDs) as hole trap centres by thermal decomposition at 160 °C. An anomalous negative photoconductivity (NPC) effect for sub-bandgap light below the PbI2 bandgap is obtained. Importantly, an electrically erasable nonvolatile photomemory can be realized. Furthermore, the device also exhibits an abnormal positive thermal resistance (PTR)-related thermomemory effect, and the thermal-induced high-resistance state (HRS) can be erased by a large bias or an illumination of 365 nm super-bandgap UV light. Additionally, logical "OR" gate operations are achieved through a combination of 650 nm sub-bandgap light and a 70 °C temperature-induced HRS, as well as a large bias and 365 nm super-bandgap light-triggered low-resistance state. These effects are attributed to the excitation and injection of holes in QDs and structural defect traps. This multifunctional device, integrating real-time sensing, nonvolatile memory, and logical operation, holds significant potential for novel electronic and optoelectronic applications.

2.
ACS Appl Mater Interfaces ; 15(47): 54863-54874, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966314

ABSTRACT

CH3NH3PbI3 is capable of exhibiting a superior photoresponse to visible light, but its self-powered devices are typically formed through p-n junctions. In this study, we fabricated a Ag/CH3NH3PbI3/C dual-terminal asymmetric electrode device using a single CH3NH3PbI3 perovskite micro/nanowire, enabling both the photoresponse and self-powered characteristics of CH3NH3PbI3 to visible light. Compared with traditional p-n junction devices, this simple device demonstrates enhanced interface photovoltaic effects by optimizing the combination of the Ag electrode with CH3NH3PbI3, resulting in superior self-powered characteristics. Under low bias voltage, the device achieves a significant on/off ratio of 103, with superior sensitivity and responsivity as well as a maximum rectification ratio of about 12. The photogenerated voltage and current reach approximately 0.8 V and 2 nA, respectively. This simple, compact, and self-powered asymmetric device exhibits great potential for applications in self-powered optoelectronics and wearable devices. This research provides a promising approach for recognizing and utilizing surface state effects in single nanoscale structures.

3.
Nanoscale Horiz ; 7(9): 1095-1108, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35913084

ABSTRACT

Although CH3NH3PbI3 can present an excellent photoresponse to visible light, its application in solar cells and photodetectors is seriously hindered due to hysteresis behaviour. Moreover, for its origin, there exist different opinions. Herein, we demonstrate a route to realize precise control for the electrical transport of a single CH3NH3PbI3 micro/nanowire by constructing a two-terminal device with asymmetric Ag and C electrodes, and its hysteresis can be clearly identified as a synergistic effect of the redox reaction at the interface of the Ag electrode and the injection and ejection of holes in the interfacial traps of the C electrode rather than its bulk effect. The device can show superior bias amplitude and illumination intensity dependence of hysteresis loops with typical bipolar resistive switching features. Thus, an excellent multilevel nonvolatile optical memory can be effectively realized by the modulation of the illumination and bias, and moreover a logic OR gate operation can be successfully implemented with voltage and illumination as input signals as well. This work clearly reveals and provides a new insight of hysteresis origin that can be attributed to a synergistic effect of two asymmetrical electrode interfaces, and therefore precisely controlling its electrical transport to realize an outstanding application potential in multifunctional devices integrated with optical nonvolatile memory and logic OR gate operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...